精英家教網 > 高中數學 > 題目詳情

已知隨機變量的概率分布為P,則這一隨機變量的數學期望E與方差D分別是       

A.0和1                      B.p和(1-p)p         C.p和p2                                          D.p和1-p

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某種項目的射擊比賽,開始時在距目標100米處射擊,如果命中記3分,且停止射擊; 若第一次射擊未命中,可以進行第二次射擊,但目標已經在150米處,這時命中記2分,且停止射擊; 若第二次仍未命中,還可以進行第三次射擊,此時目標已在200米處,若第三次命中則記1分,并停止射擊; 若三次都未命中,則記0分.已知射手甲在100米處擊中目標的概率為
12
,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(Ⅰ)求這名射手分別在第二次、第三次射擊中命中目標的概率及三次射擊中命中目標的概率;
(Ⅱ)設這名射手在比賽中得分數為ξ,求隨機變量ξ的概率分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年湖南師大附中月考理)(12分)

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已經在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分.已知射手甲在100m處擊中目標的概率為,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.

(1)求這名射手分別在第二次、第三次射擊中命中目標的概率及三次射擊中命中目標的概率;

       (2)設這名射手在比賽中得分數為,求隨機變量的概率分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:2014屆湖北荊門高二上學期期末教學質量檢測理科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

有編號為l,2,3,…,個學生,入坐編號為1,2,3,…,個座位.每個學生規(guī)定坐一個座位,設學生所坐的座位號與該生的編號不同的學生人數為,已知時,共有6種坐法.

(1)求的值;

(2)求隨機變量的概率分布列和數學期望.

 

查看答案和解析>>

科目:高中數學 來源:2010年貴州省遵義市高三考前最后一次模擬測試數學(理)試題 題型:解答題

(本小題滿分12分)

有編號為l,2,3,……,個學生,入坐編號為1,2,3,……,個座位.每個學生規(guī)定坐一個座位,設學生所坐的座位號與該生的編號不同的學生人數為,已知時,共有6種坐法.

(1)求的值;

(2)求隨機變量的概率分布列和數學期望.

 

查看答案和解析>>

同步練習冊答案