分析 (1)求得函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線的方程;
(2)①已知函數(shù)f(x)=x2-2x+alnx+1有兩個(gè)極值點(diǎn)x1,x2可化為f′(x)=$\frac{2{x}^{2}-2x+a}{x}$=0有兩個(gè)不同的正根x1,x2,從而解得a的范圍;
②由根與系數(shù)的關(guān)系可得,x1+x2=1,x1x2=$\frac{1}{2}$a,從而a=2x2(1-x2),代入化簡(jiǎn)可得f(x1)=(x1-1)2+alnx1-1=x22+2x2(1-x2)ln(1-x2)-1($\frac{1}{2}$<x2<1),$\frac{f{(x}_{1})}{{x}_{2}}$=x2+2(1-x2)ln(1-x2)-$\frac{1}{{x}_{2}}$($\frac{1}{2}$<x2<1)令h(t)=t+2(1-t)ln(1-t)-$\frac{1}{t}$,($\frac{1}{2}$<t<1),求導(dǎo)判斷函數(shù)的單調(diào)性,從而證明上式成立.
解答 解:(1)函數(shù)f(x)=x2-2x+2lnx的導(dǎo)數(shù)為f′(x)=2x-2+$\frac{2}{x}$,
f(x)在點(diǎn)(1,f(1))處的切線斜率為2,切點(diǎn)為(1,-1),
即有f(x)在點(diǎn)(1,f(1))處的切線方程為y+1=2(x-1),
即為2x-y-3=0;
(2)①函數(shù)f(x)的定義域?yàn)椋?,+∞),
f′(x)=$\frac{2{x}^{2}-2x+a}{x}$,
∵函數(shù)f(x)=x2-2x+alnx+1有兩個(gè)極值點(diǎn)x1,x2,且x1<x2.
∴f′(x)=0有兩個(gè)不同的根x1,x2,且0<x1<x2,
∴$\left\{\begin{array}{l}{△=4-8a>0}\\{a>0}\end{array}\right.$,
解得,0<a<$\frac{1}{2}$;
②證明:由(1)知,
x1+x2=1,x1x2=$\frac{1}{2}$a,則a=2x2(1-x2),
因此,f(x1)=(x1-1)2+alnx1-1
=x22+2x2(1-x2)ln(1-x2)-1($\frac{1}{2}$<x2<1),
$\frac{f{(x}_{1})}{{x}_{2}}$=x2+2(1-x2)ln(1-x2)-$\frac{1}{{x}_{2}}$($\frac{1}{2}$<x2<1),
令h(t)=t+2(1-t)ln(1-t)-$\frac{1}{t}$,($\frac{1}{2}$<t<1),
則h′(t)=1+2[-ln(1-t)-1]+$\frac{1}{{t}^{2}}$=$\frac{1-{t}^{2}}{{t}^{2}}$-2ln(1-t),
∵$\frac{1}{2}$<t<1,∴1-t2>0,ln(1-t)<0,
∴h′(t)>0,
即h(t)在($\frac{1}{2}$,1)上單調(diào)遞增,
則h(t)>h($\frac{1}{2}$)=-$\frac{3}{2}$-ln2,
即有$\frac{f{(x}_{1})}{{x}_{2}}$>-$\frac{3}{2}$-ln2.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用,同時(shí)考查了根與系數(shù)的關(guān)系,化簡(jiǎn)比較繁瑣,注意要細(xì)心,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 7 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一條直線上 | B. | 一個(gè)平面上 | C. | 兩條直線上 | D. | 兩個(gè)平面上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | -2 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com