如圖,A,B,C,D是⊙O上的四個點,過點B的切線與DC的延長線交于點E.若∠BCD=110°,則∠DBE=


  1. A.
    75°
  2. B.
    70°
  3. C.
    60°
  4. D.
    55°
B
分析:利用四點共圓的性質可得∠A,再利用弦切角定理即可得出∠DBE=∠A.
解答:∵A,B,C,D是⊙O上的四個點,∴∠A+∠BCD=180°,
∵∠BCD=110°,∴∠A=70°.
∵BE與⊙O相切于點B,∴∠DBE=∠A=70°.
故選B.
點評:熟練掌握四點共圓的性質、弦切角定理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、如圖,A,B,C,D四點都在平面a,b外,它們在a內的射影A1,B1,C1,D1是平行四邊形的四個頂點,在b內的射影A2,B2,C2,D2在一條直線上,求證:ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點,在△ABC中,AB=2,AC=BC=
2
.等邊三角形ADB以AB為軸運動.當CD=
 
時,面ACD⊥面ADB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC=
2

等邊三角形ADB以AB為軸運動.
(Ⅰ)當平面ADB⊥平面ABC時,求CD;
(Ⅱ)當△ADB轉動時,是否總有AB⊥CD?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B、C、D是某煤礦的四個采煤點,l是公路,圖中所標線段為道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四個采煤點每天的采煤量之比約為5:1:2:3,運煤的費用與運煤的路程、所運煤的重量都成正比.現(xiàn)要從P、Q、R、S中選出一處設立一個運煤中轉站,使四個采煤點的煤運到中轉站的費用最少,則地點應選在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•房山區(qū)二模)如圖,A,B,C,D是⊙O上的四個點,過點B的切線與DC的延長線交于點E.若∠BCD=110°,則∠DBE=( 。

查看答案和解析>>

同步練習冊答案