某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大.

(1)a=2(2)4元/千克

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求上的最大值;
(2)若直線為曲線的切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),設(shè),且,若不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ln(x+1)-x2x.
(1)若關(guān)于x的方程f(x)=-xb在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:對(duì)任意的正整數(shù)n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x3x2,g(x)=aln x,a∈R.
(1)若對(duì)任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=P是曲線yF(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線yF(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)為,的圖象在點(diǎn),處的切線方程為,且,直線是函數(shù)的圖象的一條切線.
(1)求函數(shù)的解析式及的值;
(2)若對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex-ln(xm).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=aln xax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3x2 (f′(x)是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果對(duì)任意的,,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案