在四面體A-BCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則異面直線EF與CD所成的角為
90°
45°
60°
30°
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A-BCD,則在四面體A-BCD中,下列說法正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A-BCD,則在四面體A-BCD中,下列說法正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A-BCD,則在四面體A-BCD中,下列說法正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(Ⅰ)證明:PQ∥平面BCD;
(Ⅱ)若二面角C−BM−D的大小為60°,求ÐBDC的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江杭州七校高二上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)如圖,在四面體A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點.
(1)證明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C−BM−D的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com