已知離心率為的橢圓的右焦點是圓的圓心,過橢圓上的動點P作圓的兩條切線分別交軸于M、N兩點.

(I)求橢圓的方程;

(II)求線段MN長的最大值,并求此時點P的坐標(biāo).

 

 

 

 

 

 

 

【答案】

 本題主要考查直線、圓、橢圓等基礎(chǔ)知識,考查函數(shù)與方程思想、分類與整合思想、及化歸與轉(zhuǎn)化思想.滿分14分.

解:(I)∵圓的圓心是

∴橢圓的右焦點 F,……………………1分

∵橢圓的離心率是,∴

,∴橢圓的方程是.……………………4分

(II)解法一:設(shè)

,∴.…………5分

直線的方程:,

化簡得

又圓心到直線的距離為1,∴ ,………………6分

,

化簡得, ………………………………………………7分

同理有. ……………………………………………… 8分                             

,……………………………………………………9分

.………………………………10分

是橢圓上的點,∴

,……………………11分                                

,則,

時,;時,,

上單調(diào)遞減,在內(nèi)也是單調(diào)遞減,………………13分

,

當(dāng)時,取得最大值,

此時點P位置是橢圓的左頂點.      …………………………14分   

解法二:由,∴.……5分

設(shè)過點P的圓的切線方程為,

∵圓心到直線的距離為1,

,化簡得,∴.…………6分

設(shè),…………………………8分

,……………………………………9分

.…………………10分

是橢圓上的點,∴,

,………………11分                                

,則

時,;時,

上單調(diào)遞減,在內(nèi)也是單調(diào)遞減,…………13分

當(dāng)時,取得最大值,

此時點P位置是橢圓的左頂點.   ………………………………14分      

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 . 已知離心率為的橢圓的右焦點是圓的圓心,過橢圓上的動點P作圓的兩條切線分別交軸于M、N兩點.

(I)求橢圓的方程;

(II)求線段MN長的最大值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林十八中高三第二次月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點到

 

左焦點的最長距離為

(1)求橢圓的方程;

(2)如圖,過橢圓的左焦點任作一條與兩坐標(biāo)軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標(biāo).

 

                                                      

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省華南師大附中高三周六自測數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

已知離心率為的橢圓C的中心在坐標(biāo)原點O,一焦點坐標(biāo)為(1,0),圓O的方程為x2+y2=7.
(1)求橢圓C的方程,并證明橢圓C在圓O內(nèi);
(2)過橢圓C上的動點P作互相垂直的兩條直線l1,l2,l1與圓O相交于點A,C,l2與圓O相交于點B,D(如圖),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省廈門市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知離心率為的橢圓的右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上的動點P作圓的兩條切線分別交y軸于M、N兩點.
(1)求橢圓的方程;
(2)求線段MN長的最大值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣西桂林十八中2011-2012學(xué)年高三第二次月考試題數(shù)學(xué)理 題型:解答題

 

     已知離心率為的橢圓上的點到左焦點的最長距離為

(1)求橢圓的方程;

(2)如圖,過橢圓的左焦點任作一條與兩坐標(biāo)軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標(biāo).

                                                       

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案