【題目】如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面(過圓柱的軸,截圓柱所得的截面),是圓柱底面圓周上不與,重合的一個點.

(1)求證:無論點如何運動,平面平面;

(2)當點是弧的中點時,求四棱錐與圓柱的體積比.

【答案】(1)見解析;(2).

【解析】

試題(I)欲證平面A1BC⊥平面A1AC,根據(jù)面面垂直的判定定理可知在平面A1BC內(nèi)一直線與平面A1AC垂直,根據(jù)側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A,B重合一個點,則ACBC,又圓柱母線AA1平面ABC,BC屬于平面ABC,則AA1BC,又AA1AC=A,根據(jù)線面垂直的判定定理可知BC平面A1AC,而BC屬于平面A1BC,滿足定理所需條件;

(II)設圓柱的底面半徑為r,母線長度為h,當點C是弧AB的中點時,求出三棱柱ABC﹣A1B1C1的體積,求出三棱錐A1﹣ABC的體積為,從而求出四棱錐A1﹣BCC1B1的體積,再求出圓柱的體積,即可求出四棱錐A1﹣BCC1B1與圓柱的體積比.

試題解析:

(1)由條件,為底面圓的直徑,是圓柱底面圓周上不與、重合的一個點,所以,又圓柱母線平面,則,點,

所以平面,從而平面 平面;

(2)設圓柱的母線長為,底面半徑為,則圓柱的體積為,

當點是弧的中點時,為等腰直角三角形,面積為,

三棱錐的體積為,

三棱柱的體積為

則四棱錐的體積為

四棱錐與圓柱的體積比為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】賽季的歐洲冠軍聯(lián)賽八分之一決賽的首回合較量將于北京時間2018年2月15日3:45在伯納烏球場打響.由羅領銜的衛(wèi)冕冠軍皇家馬德里隊(以下簡稱“皇馬”)將主場迎戰(zhàn)剛剛創(chuàng)下歐冠小組賽最多進球記錄的法甲領頭羊巴黎圣日曼隊(以下簡稱“巴黎”),激烈對決,一觸即發(fā).比賽分上,下兩個半場進行,現(xiàn)在有加泰羅尼亞每題測皇馬,巴黎的每半場進球數(shù)及概率如表:

0

1

2

巴黎

皇馬

(1)按照預測,求巴黎在比賽中至少進兩球的概率;

(2)按照預測,若設為皇馬總進球數(shù),為巴黎總進球數(shù),求的分布列,并判斷的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍;

yf(x)的表達式可改寫成y=4cos;

yf(x)圖象關于對稱;

yf(x)圖象關于x=-對稱.

其中正確命題的序號為________(將你認為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機取1個,直到取出3次紅球即停止.

(1)從袋中不放回地取球,求恰好取4次停止的概率P1

(2)從袋中有放回地取球.

①求恰好取5次停止的概率P2;

②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形和四邊形均是直角梯形,,二面角是直二面角,,,.

(1)求證:;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)有如下四個結論:

是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④上有四個零點,其中正確命題的序號是_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知四棱錐的側(cè)棱長與底面邊長都相等,四邊形為正方形,點的中點,求異面直線所成角的余弦值.

2)如圖,在長方體中,分別是的中點,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)在定義域[55]上滿足fx)﹣f(﹣x)=0,且f3)=0,當x[0,5]時,fx)的圖象如圖所示,則不等式xfx)<0的解集是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有紅、黃、白色球各1個,每次任取1個,有放回地抽三次,求基本事件的個數(shù),寫出所有基本事件的全集,并計算下列事件的概率:

1)三次顏色各不相同;

2)三次顏色不全相同;

3)三次取出的球無紅色或黃色.

查看答案和解析>>

同步練習冊答案