在一次搶險救災中,某救援隊的50名隊員被分別分派到四個不同的區(qū)域參加救援工作,其分布的情況如下表,從這50名隊員中隨機抽出2人去完成一項特殊任務(wù).
區(qū)域 | A | B | C | D |
人數(shù) | 20 | 10 | 5 | 15 |
(1);(2)分布列詳見解析,數(shù)學期望
解析試題分析:(1)從50名隊員中隨機抽出2人去完成一項特殊任務(wù),且2人來自同一區(qū)域分為四種情況,分別求概率,再根據(jù)互斥事件的概率求和公式計算;(2)基本事件總數(shù)為 ,的取值有三種情況:當時,那么所選的兩人都來自于D,有種;當時,一人來自于A,一人來自于D,有種;當時,所選兩人全部來自于A,有,分別計算其概率,并寫出隨機變量分布列,進而再求數(shù)學期望.
試題解析:(1)記“這2人來自同一區(qū)域”為事件E,那么P(E)==,
所以這2人來自同一區(qū)域的概率是.
(2)隨機變量ξ可能取的值為0,1,2,且
P(X=0)= =,P(X =1)== ,P(X =2)==
所以ξ的分布列是:
ξ的數(shù)學期望為Eξ=0×+1×+2×= X 0 1 2 P
考點:1、古典概型和互斥事件的概率;2、離散型隨機變量的分布列和期望.
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)(),若是從區(qū)間中隨機抽取的一個數(shù),是從區(qū)間中隨機抽取的一個數(shù),求方程沒有實數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當三球共線時,S=0;當S最大時,中一等獎,當S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.
(1)求甲一次游戲中能中獎的概率;
(2)設(shè)這個正六邊形的面積是6,求一次游戲中隨機變量S的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個盒子中裝有形狀大小相同的5張卡片,上面分別標有數(shù)字1,2,3,4,5,甲乙兩人分別從盒子中隨機不放回的各抽取一張.
(Ⅰ)寫出所有可能的結(jié)果,并求出甲乙所抽卡片上的數(shù)字之和為偶數(shù)的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數(shù)字作為邊長來構(gòu)造三角形,求出能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
據(jù)民生所望,相關(guān)部門對所屬單位進行整治性核查,標準如下表:
規(guī)定初查累計權(quán)重分數(shù)為10分或9分的不需要復查并給予獎勵,10分的獎勵18萬元;9分的獎勵8萬元;初查累計權(quán)重分數(shù)為7分及其以下的停下運營并罰款1萬元;初查累計權(quán)重分數(shù)為8分的要對不合格指標進行復查,最終累計權(quán)重得分等于初查合格部分與復查部分得分的和,最終累計權(quán)重分數(shù)為10分方可繼續(xù)運營,否則停業(yè)運營并罰款1萬元.
(1)求一家單位既沒獲獎勵又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學期望(獎勵為正數(shù),罰款為負數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一中食堂有一個面食窗口,假設(shè)學生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學生買飯所需的時間統(tǒng)計結(jié)果如下:
買飯時間(分) | 1 | 2 | 3 | 4 | 5 |
頻率 | 0.1 | 0.4 | 0.3 | 0.1 | 0.1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點制作(復賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復賽、決賽的概率分別是,,且各輪次通過與否相互獨立.
(I)設(shè)該選手參賽的輪次為,求的分布列和數(shù)學期望;
(Ⅱ)對于(I)中的,設(shè)“函數(shù)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n。如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗。
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.
(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com