【題目】已知三棱柱ABC﹣A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是邊長為2的等邊三角形,AA′=3,E、F分別在棱AA′,CC′上,且AE=C′F=2.
(1)求證:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一點(diǎn)M,使得C′M∥平面BEF,若存在,求 值,若不存在,說明理由;
(3)求棱錐A′﹣BEF的體積.
【答案】
(1)證明:取BC中點(diǎn)O,連接AO,因為三角形ABC是等邊三角形,所以AO⊥BC,
又因為平面BCC′B′⊥底面ABC,AO平面ABC,平面BCC′B′∩平面ABC=BC,
所以AO⊥平面BCC′B′,
又BB′平面BCC′B,所以AO⊥BB′.
又BB′⊥AC,AO∩AC=A,AO平面ABC,AC平面ABC.
所以BB′⊥底面ABC
(2)解:顯然M不是A′,B′,棱A′B′上若存在一點(diǎn)M,使得C′M∥平面BEF,
過M作MN∥AA′交BE于N,連接FN,MC′,所以MN∥CF,即C′M和FN共面,
所以C′M∥FN,
所以四邊形C′MNF為平行四邊形,所以MN=2,
所以MN是梯形A′B′BE的中位線,M為A′B′的中點(diǎn).即
(3)解:
【解析】(1)取BC中點(diǎn)O,先證AO⊥BC,再由面面垂直的性質(zhì)定理證得AO⊥面BCC'B',再由線面垂直的判定定理即可得證;(2)顯然M不是A′,B′,棱A′B′上若存在一點(diǎn)M,使得C′M∥平面BEF,可通過線面平行的判斷定理,即可證得;(3)利用等體積轉(zhuǎn)化,即可求棱錐A′﹣BEF的體積.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax﹣3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(﹣∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(﹣∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時, . (Ⅰ)求f(x)的解析式;
(Ⅱ)運(yùn)用函數(shù)單調(diào)性定義證明f(x)在定義域R上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域為A,函數(shù)y=log2(a﹣x)的定義域為B.
(1)若AB,求實數(shù)a的取值范圍;
(2)設(shè)全集為R,若非空集合(RB)∩A的元素中有且只有一個是整數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓: .
(1)若圓與軸相切,求圓的方程;
(2)求圓心的軌跡方程;
(3)已知,圓與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓: 相交于兩點(diǎn).問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計劃利用宇宙飛船進(jìn)行新產(chǎn)品搭載試驗,計劃搭載若干件新產(chǎn)品A,B,該研究所要根據(jù)產(chǎn)品的研制成本、產(chǎn)品重量、搭載試驗費(fèi)用和預(yù)計收益來決定具體安排,通過調(diào)查得到的有關(guān)數(shù)據(jù)如表:
每件A產(chǎn)品 | 每件B產(chǎn)品 | |
研制成本、搭載試驗費(fèi)用之和(萬元) | 20 | 30 |
產(chǎn)品重量(千克) | 10 | 5 |
預(yù)計收益(萬元) | 80 | 60 |
已知研制成本、搭載試驗費(fèi)用之和的最大資金為300萬元,最大搭載重量為110千克,則如何安排這兩種產(chǎn)品進(jìn)行搭載,才能使總預(yù)計收益達(dá)到最大,求最大預(yù)計收益是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com