若不等式0≤x2-ax+a≤1有唯一解,則a的取值為
[     ]
A.0
B.2
C.4
D.6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式組
x2-3x<0
x2-6x+8<0
的解集為A,設(shè)不等式(x-2)(m-x)<0的解集為B,且A∩B=A,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)判斷:
①定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x2+2,則函數(shù)f(x)的值域?yàn)閧y|y≥2或y≤-2};
②若不等式x3+x2+a<0對(duì)一切x∈[0,2]恒成立,則實(shí)數(shù)a的取值范圍是{a|a<-12};
③當(dāng)f(x)=log3x時(shí),對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
④設(shè)g(x)表示不超過(guò)t>0的最大整數(shù),如:[2]=2,[1.25]=1,對(duì)于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,2)時(shí)函數(shù)
C
x
8
的值域是(4,
16
3
]

上述判斷中正確的結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x3+x2+a<0對(duì)一切x∈[0,2]恒成立,則a的取值范圍是
{a|a<-12}
{a|a<-12}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若不等式0≤x2-ax+a≤1有唯一解,則a的取值為


  1. A.
    0
  2. B.
    2
  3. C.
    4
  4. D.
    6

查看答案和解析>>

同步練習(xí)冊(cè)答案