已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對(duì)于任意的實(shí)數(shù)x,y,f(x+y)=f(x)+f(y),且x>0時(shí),f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數(shù);
(3)證明:f(x)是增函數(shù).

解:(1)由題設(shè),令x=y=0,
恒等式可變?yōu)閒(0+0)=f(0)+f(0),解得f(0)=0,
又f(1)=2,f(2)=f(1+1)=f(1)+f(1)=2+2=4,
(2)令y=-x,則 由f(x+y)=f(x)+f(y)得
f(0)=0=f(x)+f(-x),即得f(-x)=-f(x),
故f(x)是奇函數(shù)
(3)任取x1<x2,則x2-x1>0,
由題設(shè)x>0時(shí),f(x)>0,可得f(x2-x1)>0
f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0
故有f(x2)>f(x1
所以 f(x)是增函數(shù).
分析:(1)可在恒等式中令x=y=0,即可解出f(0)=0,
(2)由奇函數(shù)的定義知,需要證明出f(-x)=-f(x),觀察恒等式發(fā)現(xiàn)若令y=-x,則問(wèn)題迎刃而解;
(3)由題設(shè)條件對(duì)任意x1、x2在所給區(qū)間內(nèi)比較f(x2)-f(x1)與0的大小即可.
點(diǎn)評(píng):本題考點(diǎn)是抽象函數(shù)及其應(yīng)用,考查用賦值法求函數(shù)值證明函數(shù)的奇偶性,以及靈活利用所給的恒等式證明函數(shù)的單調(diào)性,此類(lèi)題要求答題者有較高的數(shù)學(xué)思辨能力,能從所給的條件中組織出證明問(wèn)題的組合來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對(duì)于任意的實(shí)數(shù)x,y,f(x+y)=f(x)+f(y),且x>0時(shí),f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數(shù);
(3)證明:f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對(duì)任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求證:f(x)是奇函數(shù),
(3)舉出一個(gè)符合條件的函數(shù)y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無(wú)極值點(diǎn),其導(dǎo)函數(shù)g′(x)有零點(diǎn),求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點(diǎn)處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足xf(x)為偶函數(shù),f(x+2)=-f(x),(x∈R) 且當(dāng)1≤x≤3時(shí),f(x)=(2-x)3
(1)求-1≤x≤0時(shí),函數(shù)f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(
π
3
)
y2=f(3x2+1)y3=f(log2
1
4
)
之間的大小關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案