8.命題P:“如果a+b>0,那么a>0且b>0.”寫出命題P的否命題:“如果a+b≤0,那么a≤0或b≤0.”.

分析 根據(jù)命題“若p則q”的否命題是“若¬p則¬q”,寫出即可.

解答 解:命題P:“如果a+b>0,那么a>0且b>0.”
則命題P的否命題是¬P:“如果a+b≤0,那么a≤0或b≤0.”
故答案為:“如果a+b≤0,那么a≤0或b≤0.”

點評 本題考查了命題與它的否命題的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=lnx+x2+a-1有唯一的零點在區(qū)間(1,e)內(nèi),則實數(shù)a的取值范圍是( 。
A.(-e2,0)B.(-e2,1)C.(1,e)D.(1,e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.△ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,BF與CD交于點O,設(shè)$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,則$\overrightarrow a$,$\overrightarrow b$用表示向量$\overrightarrow{AO}$=$\frac{1}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用列舉法表示集合$A=\left\{{({x\;,\;\;y})\left|{y=\frac{6}{x+3}}\right.\;,\;\;x∈{N^*}\;,\;\;y\;∈{N^*}}\right\}$={(3,1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合M={1,2,3,4,5},對于它的非空子集A,將A中每個元素k都乘以(-1)k后再求和,稱為A的“元素特征和”.比如:A={4}的“元素特征和”為(-1)k×4=4,A={1,2,5}的“元素特征和”為(-1)1×1+(-1)2×2+(-1)5×5=-4,那么集合M的所有非空子集的“元素特征和”的總和等于-48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在我國明代數(shù)學(xué)家吳敬所著的《九章算術(shù)比類大全》中,有一道數(shù)學(xué)名題叫“寶塔裝燈”,內(nèi)容為“遠望巍巍塔七層,紅燈點點倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有195盞燈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在某校趣味運動會的頒獎儀式上,為了活躍氣氛,大會組委會決定在頒獎過程中進行抽獎活動,用分層抽樣的方法從參加頒獎儀式的高一、高二、高三代表隊中抽取20人前排就座,其中高二代表隊有6人.
(1)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)從中隨機抽取2人上臺抽獎,求a和b至少有一人上臺抽獎的概率;
(2)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎.求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)A(1,4,3),B(3,2,1),則線段AB中點M的坐標(biāo)為(2,3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某公司現(xiàn)有職員160人,中級管理人員30人,高級管理人員10人,要從其中抽取20人進行體檢,如果采用分層抽樣的方法,則職員、中級管理人員和高級管理人員應(yīng)該各抽取人數(shù)為( 。
A.8,15,7B.16,2,2C.16,3,1D.12,5,3

查看答案和解析>>

同步練習(xí)冊答案