在正方體
中,如圖E、F分別是
,CD的中點,
(1)求證:
平面ADE;
(2)cos
.
(1)略
(2)
解:建立如圖所示的直角坐標(biāo)系,(1)不妨設(shè)正方體的棱長為1,
則D(0,0,0),A(1,0,0),
(0,0,1),
E(1,1,
),F(xiàn)(0,
,0), 則
=(0,
,-1),
=(1,0,0),
=(0,1,
), 則
=0,
=0,
,
.
平面ADE.
(2)
(1,1,1),C(0,1,0),故
=(1,0,1),
=(-1,-
,-
),
=-1+0-
=-
,
,
,
則cos
.
.
本試題主要考查了運用空間向量進(jìn)行求證垂直問題和求解向量的夾角的余弦值的簡單運用.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐S-ABCD中,SD
底面ABCD,AB//DC,AD
DC,
AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC
平面SBC .
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如右圖所示,正四棱錐P-ABCD的底面積為3,體積為
,E為側(cè)棱PC的中點,則PA與BE所成的角為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,
平面
,四邊形
是正方形,
,點
、
、
分別為線段
、
和
的中點.
(Ⅰ)求異面直線
與
所成角的余弦值;
(Ⅱ)在線段
上是否存在一點
,使得點
到平面
的距離恰為
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖3,在長方體ABCD-A
1B
1C
1D
1中,底面ABCD為正方形, AA
1=2AB,則異面直線A
1B與AD
1所成的角的余弦值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在正方體ABCD-A1B1C1D1中,E、F是分別是棱A1B1、A1D1的中點,則A1B與EF所成角的大小為__________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
在如圖所示的多面體中,
⊥平面
,
,
,
,
,
,
,
是
的中點.
(1)求證:
;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
正方體ABCD—A1B1C1D1中,CC1與平面ACD1所成角的正弦值為_______
查看答案和解析>>