【題目】已知首項(xiàng)大于0的等差數(shù)列的公差,且;
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:,,,其中;
①求數(shù)列的通項(xiàng);
②是否存在實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出的值,若不存在,請說明理由;
【答案】(1)();(2)①;② 存在,;
【解析】
(1)由可得:,再利用等差數(shù)列通項(xiàng)公式代入,求得的值,即可得到答案;
(2)由轉(zhuǎn)化得到,再利用整體換元令,求出后,進(jìn)而求得數(shù)列的通項(xiàng);
(3)假設(shè)存在使數(shù)列為等比數(shù)列的,利用,求出的值后,再進(jìn)行驗(yàn)證.
(1)因?yàn)?/span>,所以,
所以,
所以();
(2)①因?yàn)?/span>,
所以,
令,則,,
所以時(shí),,
所以數(shù)列的通項(xiàng)為.
②因?yàn)?/span>,,,
所以若數(shù)列為等比數(shù)列,則有,
即或,
當(dāng)時(shí),,
不是常數(shù),數(shù)列不為等比數(shù)列;
當(dāng)時(shí),,,數(shù)列為等比數(shù)列;
所以存在實(shí)數(shù),使得數(shù)列為等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的每個(gè)頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)求球的表面積;
(2)證明:平面平面,且平面平面.
(3)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點(diǎn),AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個(gè)數(shù)( 。
①AC∥平面BEF;
②B、C、E、F四點(diǎn)可能共面;
③若EF⊥CF,則平面ADEF⊥平面ABCD;
④平面BCE與平面BEF可能垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,滿足:.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且.
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為,其中,且.
(1)求證:,并由推導(dǎo)的值;
(2)若數(shù)列共有項(xiàng),前項(xiàng)的和為,其后的項(xiàng)的和為,再其后的項(xiàng)的和為,求的比值.
(3)若數(shù)列的前項(xiàng),前項(xiàng)、前項(xiàng)的和分別為,試用含字母的式子來表示(即,且不含字母)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)來臨之際,某超市為了確定此次春節(jié)年貨的進(jìn)貨方案,統(tǒng)計(jì)去年春節(jié)前后50天年貨的日銷售量(單位:kg),得到如圖所示的頻率分布直方圖.
(1)求這50天超市日銷售量的平均數(shù);(視頻率為概率,以各組區(qū)間的中點(diǎn)值代表該組的值)
(2)先從日銷售在,,內(nèi)的天數(shù)中,按分層抽樣隨機(jī)抽取4天進(jìn)行比較研究,再從中選2天,求這2天的日銷售量都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),分別是橢圓:的左、右焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的距離的最小值為.點(diǎn)M、N是橢圓上位于軸上方的兩點(diǎn),且向量與向量平行.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求△的面積;
(3)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,對于任意滿足,且,數(shù)列滿足,,其前項(xiàng)和為.
(1)求數(shù)列、的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,求證:對于任意正整數(shù),都有;
(3)將數(shù)列、的項(xiàng)按照“當(dāng)為奇數(shù)時(shí),放在前面”,“當(dāng)為偶數(shù)時(shí),放在前面”的要求進(jìn)行“交叉排列”得到一個(gè)新的數(shù)列:、、、、、、、、求這個(gè)新數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾分一分,城市美十分;垃圾分類,人人有責(zé).某市為進(jìn)一步推進(jìn)生活垃圾分類工作,調(diào)動(dòng)全民參與的積極性,舉辦了“垃圾分類游戲挑戰(zhàn)賽”.據(jù)統(tǒng)計(jì),在為期個(gè)月的活動(dòng)中,共有萬人次參與.為鼓勵(lì)市民積極參與活動(dòng),市文明辦隨機(jī)抽取名參與該活動(dòng)的網(wǎng)友,以他們單次游戲得分作為樣本進(jìn)行分析,由此得到如下頻數(shù)分布表:
單次游戲得分 | ||||||
頻數(shù) |
(1)根據(jù)數(shù)據(jù),估計(jì)參與活動(dòng)的網(wǎng)友單次游戲得分的平均值及標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(其中標(biāo)準(zhǔn)差的計(jì)算結(jié)果要求精確到)
(2)若要從單次游戲得分在、、的三組參與者中,用分層抽樣的方法選取人進(jìn)行電話回訪,再從這人中任選人贈(zèng)送話費(fèi),求此人單次游戲得分不在同一組內(nèi)的概率.
附:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com