17.若f(x)=(x-a)(x+4)為偶函數(shù),則實數(shù)a=4.

分析 由題意可得,f(-x)=f(x)對于任意的x都成立,代入整理可得(a-4)x=0對于任意的x都成立,從而可求a

解答 解:∵f(x)=(x-a)(x+4)為偶函數(shù)
∴f(-x)=f(x)對于任意的x都成立
即(-x-a)(-x+4)=(x-a)(x+4)
∴x2+(a-4)x-4a=x2+(4-a)x-4a
∴(a-4)x=0
∴a=4
故答案為:4.

點評 本題主要考查了偶函數(shù)的定義的應用,屬于基礎試題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如下表:
分組[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[40,70)的頻率為( 。
A.0.35B.0.45C.0.55D.0.65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知等邊△ABC邊長為4,動點P滿足PA2+PB2=12,則線段PC長度的取值范圍是[$2\sqrt{3}-\sqrt{2}$,$2\sqrt{3}+\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥0}\\{y≥x}\\{2x+y-6≥0}\end{array}\right.$,則z=x-2y的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.求下列雙曲線的標準方程
(1)與雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$有公共焦點,且過點(6$\sqrt{2}$,$\sqrt{6}$)的雙曲線
(2)以橢圓3x2+13y2=39的焦點為焦點,以直線y=±$\frac{x}{2}$為漸近線的雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.sin70°cos10°+cos110°sin10°=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知tan α=2,則$\frac{sin2α+cos2(π-α)}{1+cos2α}$的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為120°,$\overrightarrow{OC}$與$\overrightarrow{OA}$的夾角為30°,|$\overrightarrow{OC}$|=5,則$\overrightarrow{OC}$=$\frac{10\sqrt{3}}{3}$$\overrightarrow{OA}$+$\frac{5\sqrt{3}}{3}$$\overrightarrow{OB}$.(用$\overrightarrow{OA}和\overrightarrow{OB}$表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和為Sn=n2+1,數(shù)列{bn}滿足:bn=$\frac{2}{{a}_{n}+1}$,前n項和為Tn.設Cn=T2n+1-Tn
(1)求數(shù)列{bn}的通項公式.
(2)求證:數(shù)列{Cn}是單調(diào)遞減數(shù)列;
(3)若對n≥k時.總有Cn<$\frac{16}{21}$成立.求自然數(shù)k的最小值.

查看答案和解析>>

同步練習冊答案