【題目】給定無(wú)窮數(shù)列,若無(wú)窮數(shù)列滿(mǎn)足:對(duì)任意的,都有,則稱(chēng)與“比較接近”.
(1)設(shè)是首項(xiàng)為1,公比為的等比數(shù)列,,判斷數(shù)列是否與“比較接近”;
(2)設(shè)數(shù)列的前四項(xiàng)為:,是一個(gè)與比較接近的數(shù)列,記集合,求中元素的個(gè)數(shù);
(3)已知是公差為的等差數(shù)列,若存在數(shù)列滿(mǎn)足:與較接近,且在中至少有1009個(gè)為正,求的取值范圍.
【答案】(1)接近;
(2)3或4;
(3)
【解析】
(1)運(yùn)用等比數(shù)列的通項(xiàng)公式和新定義“接近”,即可判斷;
(2)由新定義可得,求得的范圍,即可得到所求中元素的個(gè)數(shù);
(3)運(yùn)用等差數(shù)列的通項(xiàng)公式可得,討論公差的范圍,結(jié)合新定義“接近”,分別取滿(mǎn)足題意的數(shù)列,再進(jìn)行推理和運(yùn)算,即可得到所求的范圍.
(1)數(shù)列與“比較接近”,理由如下:
因?yàn)?/span>是首項(xiàng)為1,公比為的等比數(shù)列,所以,
又因?yàn)?/span>,所以,
所以,
所以數(shù)列與“比較接近”.
(2)因?yàn)?/span>是一個(gè)與比較接近的數(shù)列,所以,即,
因?yàn)閿?shù)列的前四項(xiàng)為:,所以,,,,
所以在中與可能相等,與可能相等,但與不可能相等,與不可能相等,
所以集合,中元素的個(gè)數(shù)是3個(gè)或4個(gè),
所以或;
(3)因?yàn)?/span>是公差為的等差數(shù)列,所以,
①若,取,數(shù)列滿(mǎn)足:與較接近,且,
則中有2018個(gè)正數(shù),滿(mǎn)足題意;
②若,取,得,數(shù)列滿(mǎn)足:與較接近,
,
則中有2018個(gè)正數(shù),滿(mǎn)足題意;
③若,取,且 ,數(shù)列滿(mǎn)足:與較接近,
則,所以,
則中恰有1009個(gè)正數(shù),滿(mǎn)足題意;
④若,若存在數(shù)列滿(mǎn)足:與較接近,即為,
可得,
則中無(wú)正數(shù),不符合題意。
綜上可得:的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長(zhǎng)的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(1)由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2)先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.
試題解析:(1)由正弦定理得,
∴,∴,即
因?yàn)?/span>,則.
(2)由正弦定理
∴, , ,
∴周長(zhǎng)
∵,∴
∴當(dāng)即時(shí)
∴當(dāng)時(shí), 周長(zhǎng)的最大值為.
【題型】解答題
【結(jié)束】
18
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類(lèi)人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體ABCDE,AB∥DE,AB⊥AD,△ACD是正三角形.AD=DE=2AB=2,EC=2,F是CD的中點(diǎn).
(1)求證AF∥平面BCE;
(2)求直線(xiàn)AD與平面BCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職稱(chēng)晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失。
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
(1)求圖中的值;
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(參考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱錐中,面,,,,,,,為的中點(diǎn)。
(1)求證:面;
(2)線(xiàn)段上是否存在一點(diǎn),滿(mǎn)足?若存在,試求出二面角的余弦值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,點(diǎn),直線(xiàn)的參數(shù)方程為(為參數(shù)),曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).
(1)求曲線(xiàn)與直線(xiàn)交點(diǎn)的極坐標(biāo)(,);
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)
(1)設(shè)時(shí),判斷函數(shù)在上的零點(diǎn)的個(gè)數(shù);
(2)當(dāng),是否存在實(shí)數(shù),對(duì)且,有恒成立,若存在,求出的范圍:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com