(2011•浙江模擬)已知平面α,β,若直線l⊥α,則α∥β是l⊥β的( 。
分析:根據(jù)一條直線垂直與兩個平行平面中的一個,則一定垂直與另一個,當一條直線垂直與兩個平面時,這兩個平面之間的關系是平行的,得到后者可以推出前者,結合充要條件的定義,即可得到結論.
解答:解:∵根據(jù)一條直線垂直與兩個平行平面中的一個,則一定垂直與另一個,
得到直線l⊥α,當α∥β得到l⊥β,
即前者可以推出后者;
當一條直線垂直與兩個平面時,這兩個平面之間的關系是平行的,得到后者可以推出前者,
∴這兩個條件可以互相推出,
即α∥β是l⊥β的充要條件,
故選A.
點評:本題考查立體幾何中線面之間的位置關系及判定定理,考查充要條件、必要條件與充分條件,判斷充要條件的方法是若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)已知△ABC中,AB=AC=4,BC=4
3
,點D為BC邊的中點,點P為BC邊所在直線上的一個動點,則
AP
AD
滿足( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)已知A、B是兩個不同的點,m、n是兩條不重合的直線,α、β是兩個不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)已知點F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦點,點E是該雙曲線的右頂點,過F且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABE是直角三角形,則該雙曲線的離心率e為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)將A,B,C,D,E五種不同的文件放入編號依次為1,2,3,4,5,6,7的七個抽屜內,每個抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內,文件C,D也必須放在相鄰的抽屜內,則文件放入抽屜內的滿足條件的所有不同的方法有(  )

查看答案和解析>>

同步練習冊答案