(本題12分,)有6名同學(xué)站成一排,求:

(1)甲不站排頭也不站排尾有多少種不同的排法:

(2)甲、乙、丙不相鄰有多少種不同的排法.(均須先列式再用數(shù)字作答)

 

【答案】

(1)A41A55=480種;(2)A33A43=144種.

【解析】站隊(duì)問題是排列組合中的典型問題,解題時(shí)要先排限制條件多的元素,把限制條件比較多的元素排列后,再排沒有限制條件的元素,最后要用分步計(jì)數(shù)原理得到結(jié)果.

(1)甲不站排頭也不站排尾,甲要站在除去排頭和排尾的四個(gè)位置,余下的五個(gè)位置使五個(gè)元素全排列,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

(2)甲、乙、丙不相鄰,可以采用甲,乙和丙插空法,首先排列除去甲,乙和丙之外的三個(gè)人,有A33種結(jié)果,再在三個(gè)元素形成的四個(gè)空中排列3個(gè)元素,共有A43,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

解:

(1)∵甲不站排頭也不站排尾,∴甲要站在除去排頭和排尾的四個(gè)位置,余下的五個(gè)位置使五個(gè)元素全排列,根據(jù)分步計(jì)數(shù)原理知共有A41A55=480種;

(2)∵甲、乙、丙不相鄰,∴可以采用甲,乙和丙插空法,首先排列除去甲,乙和丙之外的三個(gè)人,有A33種結(jié)果,再在三個(gè)元素形成的四個(gè)空中排列3個(gè)元素,共有A43,根據(jù)分步計(jì)數(shù)原理知共有A33A43=144種.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)為了研究化肥對小麥產(chǎn)量的影響,某科學(xué)家將一片土地劃分成200個(gè)的小塊,并在100個(gè)小塊上施用新化肥,留下100個(gè)條件大體相當(dāng)?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)

表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

10

35

40

10

5

表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表

小麥產(chǎn)量

頻數(shù)

15

50

30

5

(10)      完成下面頻率分布直方圖;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;

(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認(rèn)為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”

表3:

 

小麥產(chǎn)量小于20kg

小麥產(chǎn)量不小于20kg

合計(jì)

施用新化肥

 

不施用新化肥

 

合計(jì)

 

 

 

附:

 

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省湛江市高三下學(xué)期第六次月考考試文科數(shù)學(xué) 題型:解答題

.(本題12分)為了調(diào)查某廠2000名工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了位工人某天生產(chǎn)該產(chǎn)品的數(shù)量,產(chǎn)品數(shù)量的分組區(qū)間為,,,,頻率分布直方圖如圖所示.已知生產(chǎn)的產(chǎn)品數(shù)量在之間的工人有6位.

(Ⅰ)求

(Ⅱ)工廠規(guī)定從生產(chǎn)低于20件產(chǎn)品的工人中隨機(jī)的選取2位工人進(jìn)行培訓(xùn),則這2位工人不在同一組的概率是多少?

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

(本題12分)

有一種舞臺(tái)燈,外形是正六棱柱,在其每一個(gè)側(cè)面 (編號(hào)為①②③④⑤⑥)上安裝5只顏色各異的燈,假若每只燈正常發(fā)光的概率為0.5,若一個(gè)側(cè)面上至少有3只燈發(fā)光,則不需要更換這個(gè)面,否則需要更換這個(gè)面,假定更換一個(gè)面需要100元,用表示更換的面數(shù),用表示更換費(fèi)用。

(1)求①號(hào)面需要更換的概率;

(2)求6個(gè)面中恰好有2個(gè)面需要更換的概率;

(3)寫出的分布列,求的數(shù)學(xué)期望。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省高二3月月考文科數(shù)學(xué)試卷 題型:解答題

(本題12分)

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

 

 

   男

   女

需要

   40

   30

  不需要

   160

   270

 

(1)   估計(jì)該地區(qū)老年人中需要志愿者提供幫助的老年人的比例

(2)   能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

附:

   0.050

   0.010

   0.001

   3.841

   6.635

   10.828

 

查看答案和解析>>

同步練習(xí)冊答案