8.設等差數(shù)列{an}的前n項和為Sn,若Sm-2=-4,Sm=0,Sm+2=12.則公差d=( 。
A.$\frac{1}{2}$B.1C.2D.8

分析 根據(jù)等差數(shù)列的通項公式和前n項和公式,建立方程,即可得出結論.

解答 解:∵等差數(shù)列{an}的前n項和為Sn,Sm-2=-4,Sm=0,Sm+2=12,
∴am+am-1=Sm-Sm-2=0+4=4,
am+2+am+1=Sm+2-Sm=12-0=12,
即$\left\{\begin{array}{l}{{a}_{1}+(m-1)d+{a}_{1}+(m-2)d=2}\\{{a}_{1}+(m+1)d+{a}_{1}+md=12}\end{array}\right.$,
解得d=2.
故選:C.

點評 本題考查等差數(shù)列的公差的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|(x-3)(x+2)<0},B={-4,-1,0,1,3},則A∩B=( 。
A.{-1,0,1}B.{-1,0,1,3}C.{0,1}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,則z=3x+y的取值范圍是[1,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知雙曲線C:x2-y2=1及直線l:y=kx+1.
(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;
(2)若l與C交于A,B兩點,且AB中點橫坐標為$\sqrt{2}$,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.點P(2,5)到直線y=-3x的距離d等于( 。
A.0B.$\frac{11}{10}\sqrt{10}$C.$\sqrt{3}$+52D.$\sqrt{3}$-52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在如圖所示正方體ABCD-A1B1C1D1中,E是BC1與B1C的交點,給出編號為①②③④⑤的五個圖,則四面體A1-CC1E的側視圖和俯視圖分別為(  )
A.①和⑤B.②和③C.④和⑤D.④和③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.四棱柱ABCD-A1B1C1D1的所有面均是邊長為1的菱形,∠DAB=∠A1AB=∠A1AD=60°,則對角線AC1的長為( 。
A.2B.4C.$\sqrt{6}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若圓C1:(x-a)2+y2=4(a>0)與圓C2:x2+(y-$\sqrt{5}$)2=9相外切,則實數(shù)a的值為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=m,|$\overrightarrow{a}$+$\overrightarrow$|=2.
(1)若|$\overrightarrow{a}$+2$\overrightarrow$|=3,求實數(shù)m的值;
(2)若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案