12.已知數(shù)列{an}是公比為q的單調(diào)遞增的等比數(shù)列,且a1+a4=9,a2a3=8,則a1=1,q=2.

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵a1+a4=9,a2a3=8,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{3}=9}\\{{a}_{1}^{2}{q}^{3}=8}\end{array}\right.$,a1>0,q>1.
解得a1=1,q=2.
故答案分別為:1;2.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知[1+log(y+1)($\frac{sinx}{1+sinx}$)]•[log(4+sinx)(y+1)]=1.
(1)試將y表示為x的函數(shù)y=f(x),并求出定義域和值域;
(2)是否存在實(shí)數(shù)m,使得函數(shù)g(x)=mf(x)-$\sqrt{f(x)}$+1有零點(diǎn)?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:x∈[0,+∞),ex+x3-2x2≥(e-1)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α為第二象限的角,sinα=$\frac{3}{5}$則$sin(α-\frac{π}{6})$=( 。
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{-3\sqrt{3}-4}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{1\;\;\;\;\;\;x≥a}\\{0\;\;\;\;\;\;x<a}\end{array}}$,函數(shù)g(x)=x2-x+1,則函數(shù)h(x)=g(x)-f(x)有兩個(gè)零點(diǎn)的充要條件為( 。
A.a≤0B.a≥0C.a≤1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合A={x|1≤x≤5},集合B={x|x≤a},且A∪B=B,則a的范圍是a≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)命題p:若x=7,y=8,則x+y=15的逆命題,否命題和逆否命題分別是q,r,s四個(gè)命題p,q,r,s中真命題是p,s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S1,S3,S4成等差數(shù)列,則數(shù)列{an}的公比為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示.∠AOB=∠BOC=120°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,求,$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案