【題目】某校開展“讀好書,好讀書”活動,要求本學期每人至少讀一本課外書,該校高一共有100名學生,他們本學期讀課外書的本數(shù)統(tǒng)計如圖所示. (Ⅰ)求高一學生讀課外書的人均本數(shù);
(Ⅱ)從高一學生中任意選兩名學生,求他們讀課外書的本數(shù)恰好相等的概率;
(Ⅲ)從高一學生中任選兩名學生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,求隨機變量ζ的分布列及數(shù)學期望E.

【答案】解:(Ⅰ)由圖知讀課外書1本、2本、3本的學生人數(shù)分別為10,50和40, ∴高一學生讀課外書的人均本數(shù)為:
=2.3.
(Ⅱ)從高一學生中任選兩名學生,他們讀課外書的本數(shù)恰好相等的概率為:
p= =
(Ⅲ)從高一學生中任選兩名學生,
記“這兩人中一人讀1本書,另一人讀2本書”為事件A,
“這兩人中一人讀2本書,另一人讀3本書”為事件B,
“這兩人中一人讀1本書,另一人讀3本書”為事件C,
從高一學生中任選兩名學生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,
則ζ的可能取值為0,1,2,
P(ζ=1)= = ,
P(ζ=1)=P(A)+P(B)= + = ,
P(ζ=2)=P(C)= =
∴ζ的分布列為:

ζ

1

1

2

P

E(ζ)= =
【解析】(Ⅰ)由圖知讀課外書1本、2本、3本的學生人數(shù)分別為10,50和40,由此能求出高一學生讀課外書的人均本數(shù).(Ⅱ)從高一學生中任選兩名學生,利用互斥事件概率加法公式能求出他們讀課外書的本數(shù)恰好相等的概率.(Ⅲ)從高一學生中任選兩名學生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,則ζ的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量ζ的分布列及數(shù)學期望Eζ.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】程序框圖如圖所示,則該程序運行后輸出n的值是(
A.4
B.2
C.1
D.2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設D是函數(shù)y=f(x)定義域內的一個區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個“次不動點”,也稱f(x)在區(qū)間D上存在次不動點.若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動點,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)在區(qū)間I上是增函數(shù),且函數(shù) 在區(qū)間I上是減函數(shù),則稱函數(shù)f(x)是區(qū)間I上的“H函數(shù)”.對于命題:①函數(shù) 是(0,1)上的“H函數(shù)”;②函數(shù) 是(0,1)上的“H函數(shù)”.下列判斷正確的是(
A.①和②均為真命題
B.①為真命題,②為假命題
C.①為假命題,②為真命題
D.①和②均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象上相鄰兩個最高點的距離為π.若將函數(shù)f(x)的圖象向左平移 個單位長度后,所得圖象關于y軸對稱.則函數(shù)f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(x+ )?
C.f(x)=2sin(2x+
D.f(x)=2sin(2x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=lg(1﹣x2),集合A={x|y=f(x)},B={y|y=f(x)},則如圖中陰影部分表示的集合為(

A.[﹣1,0]
B.(﹣1,0)
C.(﹣∞,﹣1)∪[0,1)
D.(﹣∞,﹣1]∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x),若在定義域內存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(I)若a∈R且a≠0,求函數(shù)f(x)=ax2+x﹣a的“局部對稱點”;
(II)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導函數(shù),且滿足f(x)<f'(x),則不等式 f(2)的解集是(
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點(1,0),(0, ),(﹣3,0),則圓C的方程為

查看答案和解析>>

同步練習冊答案