在正方體ABCDA1B1C1D1中,直線A1B與平面BC1D1

成角的正切值為                                           (  )
A.B.
C.1D.
先作出直線A1B與平面BC1D1所成角,再通過解三角形求出其正切值.如圖,連結 于,連結.由,,又,得,所以就是直線A1B與平面BC1D1所成角.在直角中,求得,故選B.
評析:平面的斜線與平面所成的角,就是這條斜線與它在該
平面上的射影所成的銳角,根據(jù)題目的條件作出斜線在該平
面上的射影是實現(xiàn)解題的關鍵,而作射影的關鍵則是作出平
面的垂線,要注意面面垂直的性質在作平面的垂線時的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正三棱柱的所有棱長都是,分別是, 的中點

(1)求證∥平面  (2)求證平面  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

判斷下列命題是否正確.
(1)兩個相交平面有不在同一直線上的三個公共點;
(2)經過空間任意三點有且只有一個平面;
(3)一個角一定是平面圖形;
(4)在空間兩兩相交的三條直線必共面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為直線,為平面,給出下列命題
         ②
         ④
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知l、m是不重合的直線,、是兩兩不重合的平面,給出下列命題:①若,;②若;③若,;④若直線l、m為異面直線,則                                                                              (   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱錐P-ABC的三條側棱兩兩垂直,且分別長為2、4、4,則頂點P到面ABC的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知圓錐的底面直徑和母線長均為4,過OA上一點P作平面α,當OBα時平面a截圓錐所得的截口曲線為拋物線,設拋物線的焦點為F,若OP=1,則|PF|長為(  )
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正四面體ABCD的棱長為a.
(1)求證:AC⊥BD
(2)求AC與BD的距離.
(3)求它的內切球的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面α的一個法向量
n
=(-2,-2,1),點A(-1,3,0)在α內,則P(-2,1,4)到α的距離為( 。
A.10B.3C.
8
3
D.
10
3

查看答案和解析>>

同步練習冊答案