【題目】已知二次函數(shù)fx)=x2+bx+c有兩個零點1和﹣1

1)求fx)的解析式;

2)設(shè)gx,試判斷函數(shù)gx)在區(qū)間(﹣1,1)上的單調(diào)性并用定義證明;

3)由(2)函數(shù)gx)在區(qū)間(﹣1,1)上,若實數(shù)t滿足gt1)﹣g(﹣t)>0,求t的取值范圍.

【答案】(1)fx)=x21;(2)見解析;(3)(0).

【解析】

1)由題意可得﹣11是方程x2+bx+c0的兩根,運用韋達定理可得b,c,進而得到函數(shù)fx)的解析式;

2)函數(shù)gx在區(qū)間(﹣1,1)上是減函數(shù).運用單調(diào)性的定義,注意取值、作差和變形、定符號以及下結(jié)論等;

3)由題意結(jié)合(2)的單調(diào)性可得﹣1t1<﹣t1,解不等式即可得到所求范圍.

1)由題意得﹣11是方程x2+bx+c0的兩根,

所以﹣1+1=﹣b,﹣1×1c,

解得b0,c=﹣1,

所以fx)=x21;

2)函數(shù)gx在區(qū)間(﹣1,1)上是減函數(shù).

證明如下:設(shè)﹣1x1x21,則gx1)﹣gx2

∵﹣1x1x21,

x2x10,x1+10,x2+10

可得gx1)﹣gx2)>0,即gx1)>gx2),

則函數(shù)gx)在區(qū)間(﹣1,1)上是減函數(shù);

3)函數(shù)gx)在區(qū)間(﹣1,1)上,

若實數(shù)t滿足gt1)﹣g(﹣t)>0,

即有gt1)>g(﹣t),

又由(2)函數(shù)gx)在區(qū)間(﹣1,1)上是遞減函數(shù),

可得﹣1t1<﹣t1

解得0t.則實數(shù)t的取值范圍為(0,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)線性回歸分析的四個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點();

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當相關(guān)性系數(shù)時,兩個變量正相關(guān);

④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于

其中真命題的個數(shù)為(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任。ㄓ蟹呕,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和.求ξ分布列;
(2)從該袋子中任取(且每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數(shù).若 ,求a:b:c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(1+a|x|).設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為A,若 ,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的奇函數(shù),且當x0時,fx)=x2+2x.現(xiàn)已畫出函數(shù)fx)在y軸左側(cè)的圖象如圖所示,

(1)畫出函數(shù)fx),xR剩余部分的圖象,并根據(jù)圖象寫出函數(shù)fx),xR的單調(diào)區(qū)間;(只寫答案)

2)求函數(shù)fx),xR的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義在R上的奇函數(shù),且當x0時,fx)=x2+2x.現(xiàn)已畫出函數(shù)fx)在y軸左側(cè)的圖象如圖所示,

(1)畫出函數(shù)fx),xR剩余部分的圖象,并根據(jù)圖象寫出函數(shù)fx),xR的單調(diào)區(qū)間;(只寫答案)

2)求函數(shù)fx),xR的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒中裝有編號分別為的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數(shù),是否存在實數(shù),使函數(shù)上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口北偏西且與該港口相距20海里的處,并以30海里/時的航行速度沿正東方向勻速行駛,假設(shè)該小船沿直線方向以海里/時的航行速度勻速行駛,經(jīng)過小時與輪船相遇.

1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

2)假設(shè)小艇的最高航行速度只能達到30海里/時,試設(shè)計航行方案(即確定航行方向與航行速度的大。沟眯⊥芤宰疃虝r間與輪船相遇,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案