【題目】在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)證明,得到平面,得到證明.
(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個(gè)法向量為,平面的一個(gè)法向量為,計(jì)算夾角得到答案.
(1)因?yàn)樗倪呅?/span>是菱形,且,所以是等邊三角形,
又因?yàn)?/span>是的中點(diǎn),所以,又因?yàn)?/span>,,所以,
又,,,所以,
又,,所以平面,所以,
又因?yàn)?/span>是菱形,,所以,又,
所以平面,所以.
(2)由題意結(jié)合菱形的性質(zhì)易知,,,
以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則,,,,,
設(shè)平面的一個(gè)法向量為,則:,
據(jù)此可得平面的一個(gè)法向量為,
設(shè)平面的一個(gè)法向量為,則:,
據(jù)此可得平面的一個(gè)法向量為,
,
平面與平面所成銳二面角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購(gòu)物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球.顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球.規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次停止摸獎(jiǎng)的概率;
(2)記為1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,B為AC的中點(diǎn),分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動(dòng)點(diǎn)不含端點(diǎn)A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)邊長(zhǎng)為的正三角形分成個(gè)全等的正三角形,第一次挖去中間的一個(gè)小三角形,將剩下的個(gè)小正三角形,分別再?gòu)闹虚g挖去一個(gè)小三角形,保留它們的邊,重復(fù)操作以上的做法,得到的集合為希爾賓斯基三角形.設(shè)是前次挖去的小三角形面積之和(如是第次挖去的中間小三角形面積,是前次挖去的個(gè)小三角形面積之和),則 _____________ , __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種智能手機(jī)的投入成本是4500元/部,當(dāng)手機(jī)售價(jià)為6000元/部時(shí),月銷售量為臺(tái),市場(chǎng)分析的結(jié)果表明,如果手機(jī)的銷售價(jià)提高的百分率為,那么月銷售量減少的百分率為.記銷售價(jià)提高的百分率為時(shí),月利潤(rùn)是元.
(1)寫出月利潤(rùn)與的函數(shù)關(guān)系式;
(2)如何確定這種智能手機(jī)的銷售價(jià),使得該公司的月利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一.為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村脫貧,堅(jiān)持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為優(yōu)等品;指標(biāo)在區(qū)間的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻數(shù)分布表如下:
甲種生產(chǎn)方式:
指標(biāo)區(qū)間 | ||||||
頻數(shù) | 5 | 15 | 20 | 30 | 15 | 15 |
乙種生產(chǎn)方式:
指標(biāo)區(qū)間 | ||||||
頻數(shù) | 5 | 15 | 20 | 30 | 20 | 10 |
(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機(jī)抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再?gòu)倪@5件產(chǎn)品中,隨機(jī)抽出2件,求這2件中恰有1件是優(yōu)等品的概率;
(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計(jì)總體比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來(lái)幫助該扶貧村來(lái)脫貧?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校抽取了100名學(xué)生期中考試的英語(yǔ)和數(shù)學(xué)成績(jī),已知成績(jī)都不低于100分,其中英語(yǔ)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間是,,,,.
(1)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生英語(yǔ)成績(jī)的平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)若這100名學(xué)生數(shù)學(xué)成績(jī)分?jǐn)?shù)段的人數(shù)y的情況如下表所示:
分組區(qū)間 | |||||
y | 15 | 40 | 40 | m | n |
且區(qū)間內(nèi)英語(yǔ)人數(shù)與數(shù)學(xué)人數(shù)之比為,現(xiàn)從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取2人,求選出的2人中恰好有1人數(shù)學(xué)成績(jī)?cè)?/span>的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的個(gè)數(shù)是( )
①?gòu)哪成鐓^(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣
②線性回歸直線一定過(guò)樣本中心點(diǎn)
③對(duì)于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化
④若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2
⑤用系統(tǒng)抽樣方法從編號(hào)為1,2,3,…,700的學(xué)生中抽樣50人,若第2段中編號(hào)為20的學(xué)生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學(xué)生編號(hào)為76
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com