(本小題滿分14分)

已知函數(shù),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在, 使得不等式成立. 若,是數(shù)列的前項(xiàng)和.

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);

(Ⅲ)設(shè)),使不等式

 恒成立,求正整數(shù)的最大值.

(本小題滿份13分)

解:(I)∵在定義域內(nèi)有且只有一個(gè)零點(diǎn)

            ……1分

當(dāng)=0時(shí),函數(shù)上遞增     故不存在,

使得不等式成立        …… 2分

綜上,得    …….3分

         …………4分                            

(II)解法一:由題設(shè)

時(shí),

時(shí),數(shù)列遞增           

                可知

時(shí),有且只有1個(gè)變號(hào)數(shù);     又

             ∴此處變號(hào)數(shù)有2個(gè)

綜上得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3           ……9分

解法二:由題設(shè)            

當(dāng)時(shí),令

時(shí)也有   

綜上得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3                                 …………9分

(Ⅲ) 時(shí),

可轉(zhuǎn)化為   

設(shè)

則當(dāng),

.

所以,即當(dāng)增大時(shí),也增大.

要使不等式對(duì)于任意的恒成立,只需

即可.因?yàn)?sub>,

所以.       即

所以,正整數(shù)的最大值為5.                              ……………13分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案