【題目】已知函數(shù);
(1)若,求證: 在上單調(diào)遞增;
(2)若,試討論零點(diǎn)的個(gè)數(shù).
【答案】(1)見解析(2)當(dāng)時(shí), 沒有零點(diǎn); 時(shí), 有一個(gè)零點(diǎn); 時(shí), 有兩個(gè)零點(diǎn).
【解析】試題分析:(1)時(shí), , ,要證在上單調(diào)遞增,只要證: 對恒成立,只需證明(當(dāng)且僅當(dāng)時(shí)取等號). (當(dāng)且僅當(dāng)時(shí)取等號),即可證明;
(2)求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)極值和導(dǎo)數(shù)的關(guān)系,分 討論,即可判斷函數(shù)零點(diǎn)的個(gè)數(shù).
試題解析:(1)時(shí), , ,
要證在上單調(diào)遞增,只要證: 對恒成立,
令,則,當(dāng)時(shí), ,
當(dāng)時(shí), ,故在上單調(diào)遞減,在上單調(diào)遞增,
所以,即(當(dāng)且僅當(dāng)時(shí)等號成立),
令,則,
當(dāng)時(shí), ,當(dāng)時(shí), ,故在(0,1)上單調(diào)遞減,在上單調(diào)遞增,所以,即(當(dāng)且僅當(dāng)時(shí)取等號),
(當(dāng)且僅當(dāng)時(shí)等號成立)
在上單調(diào)遞增.
(2)由有,顯然是增函數(shù),
令,得, , ,
則時(shí), , 時(shí), ,
∴在上是減函數(shù),在上是增函數(shù),
∴有極小值, ,
①當(dāng)時(shí), , , 有一個(gè)零點(diǎn)1;
②時(shí), , , 沒有零點(diǎn);
③當(dāng)時(shí), , ,又,
又對于函數(shù), 時(shí),
∴當(dāng)時(shí), ,即,
∴ ,
令,則,
∵,∴,∴,∴,
又, ,∴有兩個(gè)零點(diǎn),
綜上,當(dāng)時(shí), 沒有零點(diǎn); 時(shí), 有一個(gè)零點(diǎn); 時(shí), 有兩個(gè)零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若正項(xiàng)等比數(shù)列滿足,,且,數(shù)列的前項(xiàng)和為,若對任意,均有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有如下命題:
①; ②函數(shù)的圖象關(guān)于原點(diǎn)中心對稱;
③函數(shù)的定義域與值域相同; ④函數(shù)的圖象必經(jīng)過第二、四象限.
其中正確命題的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角梯形中, , ,將沿折起至,使二面角為直角.
(1)求證:平面平面;
(2)若點(diǎn)滿足, ,當(dāng)二面角為45°時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次“垃圾分類知識”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:
(1)估計(jì)該組數(shù)據(jù)的中位數(shù)、眾數(shù);
(2)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;
(3)在(2)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(。┑梅植坏陀可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次;
(ⅱ)每次贈(zèng)送的隨機(jī)話費(fèi)和對應(yīng)概率如下:
現(xiàn)有一位市民要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列和數(shù)學(xué)期望.
附: ,
若,則, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時(shí)間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了30名男生、20名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如下表所示:
平均每天使用手機(jī)超過3小時(shí) | 平均每天使用手機(jī)不超過3小時(shí) | 合計(jì) | |
男生 | 25 | 5 | 30 |
女生 | 9 | 11 | 20 |
合計(jì) | 34 | 16 | 50 |
(1)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生使用手機(jī)的時(shí)間長短與性別有關(guān)?
(2)在這20名女生中,調(diào)查小組發(fā)現(xiàn)共有15人使用國產(chǎn)手機(jī),在這15人中,平均每天使用手機(jī)不超過3小時(shí)的共有9人.從平均每天使用手機(jī)超過3小時(shí)的女生中任意選取3人,求這3人中使用非國產(chǎn)手機(jī)的人數(shù)X的分布列和數(shù)學(xué)期望.
參考公式:
P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ex+3x2-2x+1+b,x∈R的圖象在x=0處的切線方程為y=ax+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若存在實(shí)數(shù)x,使得f(x)-2x2-3x-2-2k≤0成立,求整數(shù)k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一研究性學(xué)習(xí)小組對春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了4月1日至4月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差攝氏度 | 8 | 12 | 13 | 11 | 10 |
發(fā)芽數(shù)顆 | 18 | 26 | 30 | 25 | 20 |
該學(xué)習(xí)組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是4月1日與4月5日這2組數(shù)據(jù)做檢驗(yàn),請根據(jù)4月2日至4月4日這3組數(shù)據(jù)求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
參考公式和數(shù)據(jù):,;,>
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com