【題目】一個正方形被剖分為4個正方形,剖分圖的邊數(shù)為12.若一個正方形被剖分為2005個凸多邊形,試求剖分圖中邊數(shù)的最大值.

【答案】正方形剖分為2005個凸多邊形時,邊的最大值為6016.

【解析】

由歐拉定理可知,簡單多面體的頂點數(shù)、面數(shù)、棱數(shù)有如下關(guān)系:.

由歐拉定理容易看出,若一個凸多邊形被剖分為個凸多邊形,則剖分圖中的頂點數(shù)、多邊形數(shù)、邊數(shù)滿足

.

下面在一般的情況下,即正方形被剖分為個凸多邊形時,求剖分圖中邊數(shù)的最大值.設剖分圖中的頂點數(shù)為、多邊形數(shù)為、邊數(shù)為.

(1)先求邊數(shù)的上界.

設原正方形的4個頂點是、、、.若凸多邊形的頂點,則易知

(這里用表示過頂點的邊數(shù)).

.

注意到這樣的頂點個,于是,有個上面的不等式.將它們相加求和,并注意到除去正方形四邊的每條邊恰是兩個凸多邊形的邊,有

.

.

因為,,.

.

由式①有

.

將式②代入式③,并整理得

,即.

(2)構(gòu)造例子,使邊數(shù).

如圖,過正方形的一邊相繼作條鄰邊的平行線,正方形被剖分為個矩形,易知,邊數(shù)

.

綜上所述,剖分圖中邊數(shù)的最大值為.

所以,正方形剖分為2005個凸多邊形時,邊的最大值為6016.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為

(1)求橢圓的標準方程;

(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△的三個內(nèi)角、、所對應的邊分別為、,復數(shù),(其中是虛數(shù)單位),且.

(1)求證:,并求邊長的值;

(2)判斷△的形狀,并求當時,角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,已知PA平面ABCD且四邊形ABCD為直角梯形,ABC=∠BAD,PAAD=2,ABBC=1,點M、E分別是PA、PD的中點

(1)求證:CE//平面BMD

(2)Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以

,則,與矛盾,故 .

(2)由(1)可知,

,可得,

,

,

時, , 單調(diào)遞減,且;

時, , 單調(diào)遞增;且,

所以上當單調(diào)遞減,在上單調(diào)遞增,且,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質(zhì)的合理運用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:

每月完成合格產(chǎn)品的件數(shù)(單位:百件)

頻數(shù)

10

45

35

6

4

男員工人數(shù)

7

23

18

1

1

(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關(guān)?

非“生產(chǎn)能手”

“生產(chǎn)能手”

合計

男員工

span>女員工

合計

(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學期望.

附:,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

①函數(shù)與函數(shù)表示同一個函數(shù);

②奇函數(shù)的圖象一定通過直角坐標系的原點;

③函數(shù)的圖象可由的圖象向右平移1個單位得到;

④若函數(shù)的定義域為,則函數(shù)的定義域為;

⑤設函數(shù)是在區(qū)間上圖象連續(xù)的函數(shù),且,則方程在區(qū)間上至少有一實根.

其中正確命題的序號是________.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017101日起施行.作為民法典的開篇之作,《民法總則》與每個人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區(qū)間上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:

年齡

頻數(shù)

5

5

10

15

5

10

了解《民法總則》

1

2

8

12

4

5

1)填寫下面列聯(lián)表,并判斷是否有的把握認為以45歲為分界點對了解《民法總則》政策有差異;

年齡低于45歲的人數(shù)

年齡不低于45歲的人數(shù)

合計

了解

不了解

合計

2)若對年齡在,的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

參考公式和數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域為的奇函數(shù),滿足,若,________

查看答案和解析>>

同步練習冊答案