設(shè)橢圓的中心和拋物線的頂點均為原點,、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在、上各取兩個點,將其坐標(biāo)記錄于下表中:
(1)求,的標(biāo)準(zhǔn)方程;
(2)若與交于C、D兩點,為的左焦點,求的最小值;
(3)點是上的兩點,且,求證:為定值;反之,當(dāng)為此定值時,是否成立?請說明理由.
(1) : ;(2);(3)證明見解析.
解析試題分析:(1)分析哪些點在橢圓上,哪些點在拋物線上,顯然是橢圓的頂點,因此,從而點是橢圓上的點,另兩點在拋物線上,代入它們的標(biāo)準(zhǔn)方程可求得其方程;(2)與的頂點都是,底在同一直線上,因此基、其面積之比為底的比,即,這樣我們只要求出直線與已知兩曲線相交弦長即可,直線與曲線交于兩點,其弦長為,當(dāng)然由于直線過圓錐曲線的焦點,弦長也可用焦半徑公式表示;(3)從題意可看出,只有把,求出來,才能得出結(jié)論,為了求,,我們可設(shè)方程為,則方程為,這樣,都能用表示出來,再計算可得其為定值,反之若,我們只能設(shè)方程為,方程為,分別求出,代入此式,得出,如果一定能得到1,則就一定有,否則就不一定有.
試題解析:(1)在橢圓上,在拋物線上,
: (4分)
(2)(理) =.
是拋物線的焦點,也是橢圓的右焦點,①當(dāng)直線的斜率存在時,
設(shè):,,
聯(lián)立方程,得,時恒成立.
(也可用焦半徑公式得:) (5分)
聯(lián)立方程,得,恒成立.
, (6分)
=. (8分)
②當(dāng)直線的斜率不存在時,:
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點,過點F且與直線相切的動圓圓心為點M,記點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點A的坐標(biāo)為,與曲線E相交于B,C兩點,直線AB,AC分別交直線于點S,T.試判斷以線段ST為直徑的圓是否恒過兩個定點?若是,求這兩個定點的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點P是橢圓C的“準(zhǔn)圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點分別為、,上、下頂點分別為、.設(shè)直線的傾斜角的正弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦與.當(dāng)直線斜率為0時,.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知雙曲線的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓相切,且與雙曲線左、右兩支的交點分別為.
(1)求k的取值范圍,并求的最小值;
(2)記直線的斜率為,直線的斜率為,那么是定值嗎?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的準(zhǔn)線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點為橢圓右焦點,圓與橢圓的一個公共點為,且直線與圓相切于點.
(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足,其中M、N是橢圓上的點,為原點,直線OM與ON的斜率之積為,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com