已知函數(shù)f(x)的定義域?yàn)閇-1,1],若對(duì)于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0.
(1)證明:f(x)為奇函數(shù);
(2)證明:f(x)在[-1,1]為單調(diào)遞增函數(shù).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)奇偶性的判斷
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先利用特殊值法,求證f(0)=0,令y=-x即可求證;(2)由(1)得f(x)為奇函數(shù),f(-x)=-f(x),利用定義法進(jìn)行證明;
解答: 解:(1)令x=y=0,∴f(0)=0,
令y=-x,f(x)+f(-x)=0,∴f(-x)=-f(x),
∴f(x)為奇函數(shù)
(2)∵f(x)是定義在[-1,1]上的奇函數(shù);
令-1≤x1<x2≤1,
則有f(x2)-f(x1)=f(x2-x1)>0,
∴f(x)在[-1,1]上為單調(diào)遞增函數(shù);
點(diǎn)評(píng):考查抽象函數(shù)及其應(yīng)用,以及利用函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,并根據(jù)函數(shù)的單調(diào)性解函數(shù)值不等式,體現(xiàn)了轉(zhuǎn)化的思想,在轉(zhuǎn)化過程中一定注意函數(shù)的定義域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x,g(x)=-6x(a∈R).
(1)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最小值和最大值;
(2)若h(x)=f(x)-g(x)在x∈(0,+∞)時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比不為1的等比數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和為Sn,且a3+S5,a4+S4,a5+S3成等差數(shù)列.
(1)求等比數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N+,在an與an+1之間插入3n個(gè)數(shù),使這個(gè)3n+2個(gè)數(shù)成等差數(shù)列,記插入的這個(gè)3n個(gè)數(shù)的和為bn,且cn=
3n
4bn
.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1a2=48,a3=20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
Sn-1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求C
 
2
2
+C
 
2
3
+C
 
2
4
+…+C
 
2
10
;
(2)已知A
 
3
n
=C
 
4
n
,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},Sn為其前n項(xiàng)和,a5=10,S7=56.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
an
n
+3 an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4個(gè)男同學(xué)和3個(gè)女同學(xué)站成一排
(1)甲乙兩同學(xué)之間必須恰有3人,有多少種不同的排法?
(2)甲乙兩人相鄰,但都不與丙相鄰,有多少種不同的排法?
(3)女同學(xué)從左到右按高矮順序排,有多少種不同的排法?(3個(gè)女生身高互不相等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,若a3和a13是方程x2-21x+4=0的兩個(gè)根,則a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
b
滿足|
a
+
b
|=1,|
a
-
b
|=3,則
a
b
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案