如圖所示,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D: +=1(a>b>0)的焦距等于2|ON|,且過(guò)點(diǎn)(,).
(1)求圓C和橢圓D的方程;
(2)若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾斜角互補(bǔ).
(1)解:設(shè)圓的半徑為r,由題意,圓心為(r,2),
因?yàn)閨MN|=3,
所以r2=()2+22=,r=,
故圓C的方程是(x-)2+(y-2)2= ①
在①中,令y=0解得x=1或x=4,
所以N(1,0),M(4,0).
由得c=1,a=2,
故b2=3.
所以橢圓D的方程為+=1.
(2)證明:設(shè)直線l的方程為y=k(x-4).
由
得(3+4k2)x2-32k2x+64k2-12=0 ②
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=,x1x2=.
當(dāng)x1≠1,x2≠1時(shí),
kAN+kBN=+
=+
=k·
=·[2x1x2-5(x1+x2)+8]
=·
=0.
所以kAN=-kBN,
當(dāng)x1=1或x2=1時(shí),k=±,
此時(shí),對(duì)方程②,Δ=0,不合題意.
所以直線AN與直線BN的傾斜角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F1、F2是橢圓C: +=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且⊥,若△PF1F2的面積為9,則b= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F,O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
(3)若點(diǎn)M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng)≤k≤2時(shí),|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F1,F2分別是橢圓E: +y2=1的左、右焦點(diǎn),F1,F2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(1)求圓C的方程;
(2)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓E: +=1(a>b>0),以拋物線y2=8x的焦點(diǎn)為頂點(diǎn),且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點(diǎn),O為坐標(biāo)原點(diǎn),直線l:y=kx+m與橢圓E相交于A、B兩點(diǎn),與直線x=-4相交于Q點(diǎn),P是橢圓E上一點(diǎn)且滿足=+,證明·為定值,并求出該值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知A,B分別是橢圓C1: +=1的左、右頂點(diǎn),P是橢圓上異于A,B的任意一點(diǎn),Q是雙曲線C2: - =1上異于A,B的任意一點(diǎn),a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某商場(chǎng)有來(lái)自三個(gè)國(guó)家的進(jìn)口奶制品,其中A國(guó)、B國(guó)、C國(guó)的奶制品分別有40種、10種、30種,現(xiàn)從中抽取一個(gè)容量為16的樣本進(jìn)行三聚氰胺檢測(cè),若采用分層抽樣的方法抽取樣本,則抽取來(lái)自B國(guó)的奶制品________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
為征求個(gè)人所得稅法修改建議,某機(jī)構(gòu)對(duì)當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1 000,1 500)).
(1)求居民月收入在[3 000,4 000)的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10 000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2 500,3 000)的這段應(yīng)抽多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com