【題目】設(shè)函數(shù).
(1)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè),若當(dāng)時(shí),函數(shù)的兩個(gè)極值點(diǎn)滿足,求證:.
【答案】(1)(2)證明見(jiàn)解析
【解析】
(1)求函數(shù)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性,即可求得結(jié)果;
(2)根據(jù)題意,先求得的范圍,再利用進(jìn)行適度放縮,即可由對(duì)勾函數(shù)單調(diào)性,容易證明.
(1)由已知,可知函數(shù)的定義域?yàn)?/span>,
在上有兩個(gè)零點(diǎn),
設(shè),
,
當(dāng)時(shí),,為增函數(shù),不存在兩個(gè)零點(diǎn);
當(dāng)時(shí),,得,
時(shí),,為增函數(shù),
時(shí),,為減函數(shù).
且此時(shí)當(dāng)趨近于時(shí),趨近于負(fù)無(wú)窮;當(dāng)趨近于正無(wú)窮時(shí),趨近于負(fù)無(wú)窮.
故要滿足題意,只需:,
,
實(shí)數(shù)的取值范圍是.
(2)證明:,
,
由的兩根為,故可得,,,
又,
,
解得,
,
設(shè),
則,
當(dāng)時(shí),,為增函數(shù),
當(dāng)時(shí),,為減函數(shù),
,
,
,
令,則,
在時(shí)單調(diào)遞減,
,
成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,、分別為棱、的中點(diǎn),.
(1)證明:平面平面;
(2)若二面角的大小為45°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,討論函數(shù)的單調(diào)性;
(Ⅱ)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)在拋物線上,過(guò)點(diǎn)作垂直于軸,垂足為,設(shè).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)點(diǎn),過(guò)點(diǎn)的直線交軌跡于兩點(diǎn),直線的斜率分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棋盤上標(biāo)有第、、、、站,棋子開(kāi)始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開(kāi)始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有輝煌的數(shù)學(xué)研究成果,其中《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》,《緝古算經(jīng)》均有著十分豐富的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),某中學(xué)計(jì)劃將這本專著作為高中階段“數(shù)學(xué)文化”樣本課程選修內(nèi)容,要求每學(xué)年至少選一科,三學(xué)年必須將門選完,則小南同學(xué)的不同選修方式有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,若集合中恰好有3個(gè)元素,求實(shí)數(shù)的取值范圍;
(3)若,且,求證:數(shù)列為等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列{an},若從第二項(xiàng)起的每一項(xiàng)均大于該項(xiàng)之前的所有項(xiàng)的和,則稱{an}為P數(shù)列.
(1)若{an}的前n項(xiàng)和Sn=3n+2,試判斷{an}是否是P數(shù)列,并說(shuō)明理由;
(2)設(shè)數(shù)列a1,a2,a3,…,a10是首項(xiàng)為﹣1、公差為d的等差數(shù)列,若該數(shù)列是P數(shù)列,求d的取值范圍;
(3)設(shè)無(wú)窮數(shù)列{an}是首項(xiàng)為a、公比為q的等比數(shù)列,有窮數(shù)列{bn},{cn}是從{an}中取出部分項(xiàng)按原來(lái)的順序所組成的不同數(shù)列,其所有項(xiàng)和分別為T1,T2,求{an}是P數(shù)列時(shí)a與q所滿足的條件,并證明命題“若a>0且T1=T2,則{an}不是P數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒(méi)有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com