設(shè)函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.
分析:(1)已知曲線上的點,并且知道過此點的切線方程,容易求出斜率,又知點(2,f(2))在曲線上,利用方程聯(lián)立解出a,b
(2)可以設(shè)P(x0,y0)為曲線上任一點,得到切線方程,再利用切線方程分別與直線x=0和直線y=x聯(lián)立,得到交點坐標(biāo),接著利用三角形面積公式即可.
解答:解析:(1)方程7x-4y-12=0可化為y=
7
4
x-3
,當(dāng)x=2時,y=
1
2
,
f(x)=a+
b
x2
,于是
2a-
b
2
=
1
2
a+
b
4
=
7
4
,解得
a=1
b=3
,故f(x)=x-
3
x


(2)設(shè)P(x0,y0)為曲線上任一點,由y=1+
3
x2
知曲線在點P(x0,y0)處的切線方程為y-y0=(1+
3
x02
)(x-x0)
,即y-(x0-
3
x0
)=(1+
3
x02
)(x-x0)

令x=0,得y=-
6
x0
,從而得切線與直線x=0的交點坐標(biāo)為(0,-
6
x0
)
;
令y=x,得y=x=2x0,從而得切線與直線y=x的交點坐標(biāo)為(2x0,2x0);
所以點P(x0,y0)處的切線與直線x=0,y=x所圍成的三角形面積為
1
2
|-
6
x0
||2x0|=6

故曲線y=f(x)上任一點處的切線與直線x=0,y=x所圍成的三角形面積為定值,此定值為6.
點評:高考考點:導(dǎo)數(shù)及直線方程的相關(guān)知識
易錯點:運算量大,不仔細(xì)而出錯.
備考提示:運算能力一直是高考考查的能力之一,近年來,對運算能力的要求降低了,但對準(zhǔn)確率的要求提高了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個.
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
對一切x>0恒成立,求m的取值范圍;
(Ⅲ)若函數(shù)h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域為[m,n](其中n>m>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
(1)求y=f(x)的解析式,并求其單調(diào)區(qū)間;
(2)用陰影標(biāo)出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax-1x+1
;其中a∈R

(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案