【題目】若函數(shù)滿足對任意,都有成立,則實(shí)數(shù)的取值范圍是______.
【答案】
【解析】
根據(jù)題中條件,可以先判斷出函數(shù)f(x)在R上單調(diào)遞增,再結(jié)合分段函數(shù)的解析式,要每一段都是增函數(shù),且分界點(diǎn)時(shí)右段函數(shù)的函數(shù)值要大于等于左段函數(shù)的函數(shù)值,列出不等關(guān)系,求解即可得到a的取值范圍.
:∵對任意x1≠x2,都有成立,
∴x1-x2與f(x1)-f(x2)同號,
根據(jù)函數(shù)單調(diào)性的定義,可知f(x)在R上是單調(diào)遞增函數(shù),
∴當(dāng)時(shí),f(x)=(為增函數(shù),則 ,即a<3,①
且當(dāng)x=2時(shí),有最小值 ;
當(dāng)時(shí),f(x)=為二次函數(shù),圖象開口向下,對稱軸為x=2,
若f(x)在(-∞,2)上為增函數(shù),且 ;
又由題意,函數(shù)在定義域R上單調(diào)遞增,
則,解得 ;②
綜合①②可得a的取值范圍: ,
即答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號).
①當(dāng)0<CQ< 時(shí),S為四邊形
②當(dāng)CQ= 時(shí),S為等腰梯形
③當(dāng)CQ= 時(shí),S與C1D1的交點(diǎn)R滿足C1R=
④當(dāng) <CQ<1時(shí),S為六邊形
⑤當(dāng)CQ=1時(shí),S的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有直線和平面,則下列四個(gè)命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時(shí)已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟(jì)損失約為元,且滲水面積以每天的速度擴(kuò)散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時(shí)立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補(bǔ)貼費(fèi)為每人元,勞務(wù)費(fèi)及耗材費(fèi)為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.
寫出關(guān)于的函數(shù)關(guān)系式;
應(yīng)安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項(xiàng)支出費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收取管理費(fèi)2元,月用電量不超過30度時(shí),每度0.5元;超過30度時(shí),超過部分按每度0.6元收取;
方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)(元)與用電量(度)間的函數(shù)關(guān)系;
(2)老王家九月份按方案一交費(fèi)35元,問老王家該月用電多少度?
(3)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C: =1(a>b>0)的離心率為 ,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為 ,不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△APB面積取最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l.過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點(diǎn)處的切線過點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(II)若函數(shù)在區(qū)間內(nèi)無零點(diǎn),求實(shí)數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com