如果直線與圓有公共點(diǎn),則實(shí)數(shù)a的取值范圍是_________.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題8分,第(3)小題6分)
已知雙曲線的一個(gè)焦點(diǎn)是,且
(1)求雙曲線的方程;
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上.
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知定點(diǎn)A(0,1),B(0,-1),C(1,0).動(dòng)點(diǎn)P滿足:.
(I)求動(dòng)點(diǎn)P的軌跡方程,并說明方程表示的曲線類型;
(II)當(dāng)時(shí),求的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題8分) 已知直線過點(diǎn)且與直線垂直,拋物線C:與直線交于A、B兩點(diǎn).
(1)求直線的參數(shù)方程;
(2)設(shè)線段AB的中點(diǎn)為P,求P的坐標(biāo)和點(diǎn)M到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,A點(diǎn)的坐標(biāo)為(3,0),BC邊長(zhǎng)為2,且BCy軸上的區(qū)間[-3,3]上滑動(dòng).
(1)求△ABC外心的軌跡方程;
(2)設(shè)直線ly=3xb與(1)的軌跡交于E,F兩點(diǎn),原點(diǎn)到直線l的距離為d,求 的最大值.并求出此時(shí)b的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率.直線:與橢圓C相交于兩點(diǎn), 且
(1)求橢圓C的方程
(2)點(diǎn)P(,0),A、B為橢圓C上的動(dòng)點(diǎn),當(dāng)時(shí),求證:直線AB恒過一個(gè)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,當(dāng)mn取得最小值時(shí),直線與曲線交點(diǎn)個(gè)數(shù)為              .w.&

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓和雙曲線的公共焦點(diǎn)為,是兩曲線的一個(gè)公共點(diǎn),則cos的值等于(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個(gè)命題:
①動(dòng)點(diǎn)M到兩定點(diǎn)A、B的距離之比為常數(shù),則動(dòng)點(diǎn)M的軌跡是圓;
②橢圓的離心率為
③雙曲線的焦點(diǎn)到漸近線的距離是;
④已知拋物線上兩點(diǎn), 為原點(diǎn)),則.
其中的真命題是_____________.(把你認(rèn)為是真命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案