【題目】已知函數(shù).

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

【答案】(1)(2)

【解析】試題分析: Ⅰ)由于x=3f(x)的極值點,則f′(3)=0求出a,進而求出f′(x)>0得到函數(shù)的增區(qū)間,求出f′(x)<0得到函數(shù)的減區(qū)間,即可得到函數(shù)的極大值;
Ⅱ)由于f(x)≥1恒成立,即x>0時, 恒成立,設g(x)= ,,分類討論參數(shù)a,得到函數(shù)g(x)的最小值≥0,即可得到a的范圍.

試題解析:

(1)

的極值點

解得

時,

變化時,

遞增

極大值

遞減

極小值

遞增

的極大值為.

(2)要使得恒成立,即時, 恒成立,

(i)當時,由得函數(shù)單調(diào)減區(qū)間為,由得函數(shù)單調(diào)增區(qū)間為,此時,得.

(ii)當時,由得函數(shù)單調(diào)減區(qū)間為,由得函數(shù)單調(diào)增區(qū)間為,此時, 不合題意.

(iii)當時, 上單調(diào)遞增,此時, 不合題意

(iv)當時,由得函數(shù)單調(diào)減區(qū)間為,由得函數(shù)單調(diào)增區(qū)間為,此時 不合題意.

綜上所述: 時, 恒成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻轉過程中,下列說法正確的是 . (填序號)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共12分)

已知函數(shù) 為自然對數(shù)的底數(shù)).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,不等式恒成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2為橢圓C: (a>b>0)的左、右焦點,M為橢圓C的上頂點,且|MF1|=2,右焦點與右頂點的距離為1.
(1)求橢圓C的標準方程;
(2)若直線l與橢圓C相交于A,B兩點,且直線OA,OB的斜率kOA , kOB滿足kOAkOB=﹣ ,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下列命題:
①函數(shù)f(x)有最小值;
②當a=0時,函數(shù)f(x)的值域為R;
③若函數(shù)f(x)在區(qū)間(﹣∞,2]上單調(diào)遞減,則實數(shù)a的取值范圍是a≤﹣4.
其中正確的命題是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,定直線,動點到點的距離與到直線的距離之比等于.

(1)求動點的軌跡的方程;

(2)設軌跡軸負半軸交于點,過點作不與軸重合的直線交軌跡于兩點,直線分別交直線于點.試問:在軸上是否存在定點,使得?若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面,分別是的中點,,.

(1)求二面角的余弦值;

(2)點是線段上的動點,當直線所成的角最小時,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),且當x>0時, 2x
(1)求當x<0時,函數(shù)f(x)的表達式
(2)解不等式f(x)≤3.

查看答案和解析>>

同步練習冊答案