分析 由真數(shù)大于0求出原函數(shù)的定義域,再求出內(nèi)函數(shù)的減區(qū)間,結(jié)合復(fù)合函數(shù)的單調(diào)性得答案.
解答 解:由x2+2x-8>0,得x<-4或x>2,
∵函數(shù)t=x2+2x-8在(2,+∞)上為增函數(shù),且函數(shù)值大于0,
∴$\frac{1}{{x}^{2}+2x-8}$在(2,+∞)上為減函數(shù),
又外函數(shù)y=lnt為定義域內(nèi)的增函數(shù),
∴函數(shù)f(x)=ln$\frac{1}{{x}^{2}+2x-8}$的單調(diào)減區(qū)間為(2,+∞).
故答案為:(2,+∞).
點(diǎn)評(píng) 本題考查復(fù)合函數(shù)的單調(diào)性,復(fù)合的兩個(gè)函數(shù)同增則增,同減則減,一增一減則減,注意對(duì)數(shù)函數(shù)的定義域是求解的前提,考查學(xué)生發(fā)現(xiàn)問(wèn)題解決問(wèn)題的能力,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,-1) | B. | (1,-1) | C. | ($\frac{1}{4}$,-$\frac{1}{4}$) | D. | ($\frac{1}{16}$,-$\frac{1}{16}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | [2,+∞) | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<0<n | B. | 0<n<m | C. | 0<m<n | D. | n<m<0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com