【題目】為了得到函數(shù)y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
【答案】A
【解析】解:把余弦曲線y=cosx上的所有的點向左平移 個單位長度,
可得函數(shù)y=cos(x+ )的圖象,
所以答案是:A.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,對于 上的任意x1 , x2 , 有如下條件:
① ;②|x1|>x2;③x1>|x2|;④ .
其中能使g(x1)>g(x2)恒成立的條件序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=f(t)是某港口水的深度y(米)關(guān)于時間t(時)的函數(shù),其中0≤t≤24.下表是該港口某一天從0時至24時記錄的時間t與水深y的關(guān)系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5 | 7.5 | 5 | 2.5 | 5 | 7.5 | 5 | 2.5 | 5 |
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.下面的函數(shù)中,最能近似表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:不等式a2﹣4a+3<0的解集;命題Q:使(a﹣2)x2+2(a﹣2)x﹣4<0對任意實數(shù)x恒成立的實數(shù)a,若P∨Q是真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為 .
(Ⅰ)求 的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 與直線 相切.
(1)求圓 的方程;
(2)過點 的直線 截圓所得弦長為 ,求直線 的方程;
(3)設(shè)圓 與 軸的負半軸的交點為 ,過點 作兩條斜率分別為 的直線交圓 于 兩點,且 ,證明:直線 恒過一個定點,并求出該定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,函數(shù) , .
(1)若 的最小值為-1,求實數(shù) 的值;
(2)是否存在實數(shù) ,使函數(shù) , 有四個不同的零點?若存在,求出 的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點A,B,且 ,求k的值;
(2)若 ,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點分別為C,D,求證:直線CD過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com