【題目】已知函數(shù)a為負(fù)整數(shù))的圖像經(jīng)過(guò)點(diǎn).

1)求的解析式;

2)設(shè)函數(shù),若上解集非空,求實(shí)數(shù)b的取值范圍;

3)證明:方程有且僅有一個(gè)解.

【答案】1.(23)見(jiàn)解析﹔

【解析】

1)在中令,故,因?yàn)?/span>為負(fù)整數(shù),所以為正整數(shù),當(dāng)時(shí),利用判別式可判斷此不等式無(wú)解,所以,解得,從而可得的解析式;

2上解集非空轉(zhuǎn)化為,上有解,再構(gòu)造函數(shù)轉(zhuǎn)化為最小值可得;(3)即證的圖象有且只有一個(gè)交點(diǎn),證明時(shí),的圖象無(wú)交點(diǎn),在上有且只有一個(gè)零點(diǎn),即得證.

1)在中令,

,

因?yàn)?/span>為負(fù)整數(shù),所以為正整數(shù),

當(dāng)時(shí),,因?yàn)椤?/span>,所以

無(wú)解,

所以,解得,所以

,

2,上解集非空,上有解,

,則

因?yàn)楹瘮?shù),上是減函數(shù),

所以時(shí),3,

3)證明:即證的圖象有且只有一個(gè)交點(diǎn),

當(dāng)時(shí),,

時(shí),的圖象無(wú)交點(diǎn),

當(dāng)時(shí),令,

因?yàn)楹瘮?shù)上為遞減函數(shù),函數(shù)上為遞減函數(shù),

所以上為遞減函數(shù)(減函數(shù)+減函數(shù)=減函數(shù)),

時(shí),,時(shí),,根據(jù)零點(diǎn)存在性定理知:上有且只有一個(gè)零點(diǎn),

綜上得有且只有一個(gè)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市疾控中心流感監(jiān)測(cè)結(jié)果顯示,自月起,該市流感活動(dòng)一度出現(xiàn)上升趨勢(shì),尤其是月以來(lái),呈現(xiàn)快速增長(zhǎng)態(tài)勢(shì),截止目前流感病毒活動(dòng)度仍處于較高水平,為了預(yù)防感冒快速擴(kuò)散,某校醫(yī)務(wù)室采取積極方式,對(duì)感染者進(jìn)行短暫隔離直到康復(fù)假設(shè)某班級(jí)已知位同學(xué)中有位同學(xué)被感染,需要通過(guò)化驗(yàn)血液來(lái)確定感染的同學(xué),血液化驗(yàn)結(jié)果呈陽(yáng)性即為感染,呈陰性即未被感染.下面是兩種化驗(yàn)方法: 方案甲:逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;

方案乙:先任取個(gè)同學(xué),將它們的血液混在一起化驗(yàn),若結(jié)果呈陽(yáng)性則表明感染同學(xué)為這位中的位,后再逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;若結(jié)果呈陰性則在另外位同學(xué)中逐個(gè)檢測(cè);

(1)求依方案甲所需化驗(yàn)次數(shù)等于方案乙所需化驗(yàn)次數(shù)的概率;

(2)表示依方案甲所需化驗(yàn)次數(shù),表示依方案乙所需化驗(yàn)次數(shù),假設(shè)每次化驗(yàn)的費(fèi)用都相同,請(qǐng)從經(jīng)濟(jì)角度考慮那種化驗(yàn)方案最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的是( )
①對(duì)一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,a,b,c分別為角A,BC所對(duì)的三邊,

(I)求角A

(II)若,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根據(jù)數(shù)列前n項(xiàng)和的定義得到的值,再由數(shù)列的前n項(xiàng)和的公式得到,進(jìn)而求得首項(xiàng),由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,

根據(jù)等差數(shù)列的前n項(xiàng)和公式得到Sm,得到首項(xiàng)為-2,故=2,解得m=5.

故答案為:A.

【點(diǎn)睛】

這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

型】單選題
結(jié)束】
11

【題目】已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lganb3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于不等式,則對(duì)區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______

【答案】

【解析】

根據(jù)二次函數(shù)的單調(diào)性求出x2﹣3x+2在區(qū)間[0,2]上的最小值和最大值,把問(wèn)題轉(zhuǎn)化關(guān)于t的不等式組得答案.

∵x2﹣3x+2=,

當(dāng)x[0,2]時(shí),,(x2﹣3x+2)max=2.

對(duì)于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對(duì)區(qū)間[0,2]上任意x都成立的實(shí)數(shù)t的取值范圍是[﹣1,1﹣].

故答案為:[﹣1,1﹣].

【點(diǎn)睛】

本題考查函數(shù)恒成立問(wèn)題,考查了不等式的解法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.二次不等式分含參二次不等式和不含參二次不等式;對(duì)于含參的二次不等式問(wèn)題,先判斷二次項(xiàng)系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進(jìn)行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.

型】填空
結(jié)束】
16

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項(xiàng)和,則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,

(1)的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和

【答案】(1)(2)

【解析】

(1)根據(jù)等比數(shù)列的通項(xiàng)公式得到:,解得二次方程可得到(舍去),進(jìn)而得到數(shù)列的通項(xiàng);(2)已知數(shù)列的類型是等差數(shù)列與等比數(shù)列求和的問(wèn)題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.

:(1)設(shè)為等比數(shù)列的公比,則由,:

,解得:(舍去)

所以的通項(xiàng)公式為

(2) 由 等 差 數(shù) 列 的 通 項(xiàng) 公 式 得 到:

由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項(xiàng) 和 公 式 得 到

【點(diǎn)睛】

這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

型】解答
結(jié)束】
18

【題目】設(shè)a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】199個(gè)自然數(shù)中任取兩個(gè):

恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);

至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).

在上述事件中,是對(duì)立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在直角坐標(biāo)系中, 直線的參數(shù)方程為是為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系, 曲線的極坐標(biāo)方程為.

(1) 判斷直線與曲線的位置關(guān)系

(2) 在曲線上求一點(diǎn),使得它到直線的距離最大,并求出最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案