【題目】在四棱錐中,平面
平面
,
為等邊三角形,
,
,
,點(diǎn)
是
的中點(diǎn).
(1)求證:平面PAD;
(2)求二面角P﹣BC﹣D的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)要證明線面平行,關(guān)鍵是證明線線平行,所以取中點(diǎn)
,連結(jié)
,
,根據(jù)條件證明
;
(2)取中點(diǎn)
,連結(jié)
,可證明
平面
,取
中點(diǎn)
,連結(jié)
,則
,以
為原點(diǎn),如圖建立空間直角坐標(biāo)系,求平面
的法向量,用兩個(gè)平面的法向量求二面角的余弦值.
證明:(1)取中點(diǎn)
,連結(jié)
,
.
因?yàn)?/span>為
中點(diǎn),所以
,
.
因?yàn)?/span>,
.所以
且
.
所以四邊形為平行四邊形,所以
.
因?yàn)?/span>平面
,
平面
,
所以平面
.
(2)取中點(diǎn)
,連結(jié)
.
因?yàn)?/span>,所以
.
因?yàn)槠矫?/span>平面
,
平面平面
,
平面
,
所以平面
.取
中點(diǎn)
,連結(jié)
,則
.
以為原點(diǎn),如圖建立空間直角坐標(biāo)系,
設(shè),則
,
,
,
,
,
,
.
平面的法向量
,
設(shè)平面的法向量
,
由,得
.
令,則
,
.
由圖可知,二面角是銳二面角,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(其中
)的焦點(diǎn)
的直線交拋物線于
兩點(diǎn),且
兩點(diǎn)的縱坐標(biāo)之積為
.
(1)求拋物線的方程;
(2)當(dāng)時(shí),求
的值;
(3)對(duì)于軸上給定的點(diǎn)
(其中
),若過(guò)點(diǎn)
和
兩點(diǎn)的直線交拋物線
的準(zhǔn)線
點(diǎn),求證:直線
與
軸交于一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的營(yíng)銷(xiāo)部門(mén)對(duì)某件商品在網(wǎng)上銷(xiāo)售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷(xiāo)量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)統(tǒng)計(jì)得到以下表:
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷(xiāo)量(百件)與返還點(diǎn)數(shù)
之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷(xiāo)量;
(2)該公司為了在購(gòu)物節(jié)期間對(duì)所有商品價(jià)格進(jìn)行新一輪調(diào)整,隨機(jī)抽查了上一年購(gòu)物節(jié)期間60名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表:
網(wǎng)購(gòu)金額 (單位:千元) | 合計(jì) | ||||||
頻數(shù) | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若網(wǎng)購(gòu)金額超過(guò)2千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)2千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”.該營(yíng)銷(xiāo)部門(mén)為了進(jìn)步了解這60名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求
的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):①,
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的右焦點(diǎn)為
,離心率為
,
是橢圓
上位于第一象限內(nèi)的任意一點(diǎn),
為坐標(biāo)原點(diǎn),
關(guān)于
的對(duì)稱(chēng)點(diǎn)為
,
,圓
:
.
(1)求橢圓和圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作
與圓
相切于點(diǎn)
,使得點(diǎn)
,點(diǎn)
在
的兩側(cè).求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(
)的左、右焦點(diǎn)分別是
,
,點(diǎn)
為
的上頂點(diǎn),點(diǎn)
在
上,
,且
.
(1)求的方程;
(2)已知過(guò)原點(diǎn)的直線與橢圓
交于
,
兩點(diǎn),垂直于
的直線
過(guò)
且與橢圓
交于
,
兩點(diǎn),若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫(xiě)過(guò)程)
(3) 從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)數(shù)使得
則稱(chēng)
是區(qū)間
的
一內(nèi)點(diǎn).
(1)求證:的充要條件是存在
使得
是區(qū)間
的
一內(nèi)點(diǎn);
(2)若實(shí)數(shù)滿(mǎn)足:
求證:存在
,使得
是區(qū)間
的
一內(nèi)點(diǎn);
(3)給定實(shí)數(shù),若對(duì)于任意區(qū)間
,
是區(qū)間的
一內(nèi)點(diǎn),
是區(qū)間的
一內(nèi)點(diǎn),且不等式
和不等式
對(duì)于任意
都恒成立,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>
,其中
.
(1)當(dāng)時(shí),寫(xiě)出函數(shù)
的單調(diào)區(qū)間(不要求證明);
(2)若對(duì)于任意的,均有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓和拋物線
有相同的焦點(diǎn)
,橢圓
過(guò)點(diǎn)
,拋物線
的頂點(diǎn)為原點(diǎn).
求橢圓
和拋物線
的方程;
設(shè)點(diǎn)P為拋物線
準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)P作拋物線
的兩條切線PA,PB,其中A,B為切點(diǎn).
設(shè)直線PA,PB的斜率分別為
,
,求證:
為定值;
若直線AB交橢圓
于C,D兩點(diǎn),
,
分別是
,
的面積,試問(wèn):
是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com