18.已知M是直線l:x=-1上的動(dòng)點(diǎn),點(diǎn)F的坐標(biāo)是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點(diǎn)N
(Ⅰ)求點(diǎn)N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動(dòng)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,點(diǎn)P的坐標(biāo)為(2,0),直線AP與曲線C的另一個(gè)交點(diǎn)為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個(gè)定點(diǎn)Q,使得|QH|為定值?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

分析 (Ⅰ)由題意可知:丨NM丨=丨NF丨,即曲線C為拋物線,焦點(diǎn)坐標(biāo)為F(1,0),點(diǎn)N的軌跡C的方程y2=4x;
(Ⅱ)設(shè)A($\frac{{a}^{2}}{4}$,a),則A′($\frac{{a}^{2}}{4}$,-a),直線AB的方程y=$\frac{4a}{{a}^{2}-8}$(x-2),代入拋物線方程,求得B的坐標(biāo),A′B的方程為y+a=-$\frac{4a}{8+{a}^{2}}$(x-$\frac{{a}^{2}}{4}$),則令y=0,則x=-2,直線A′B與x軸交于定點(diǎn)T(-2,0),即可求得存在一個(gè)定點(diǎn)T(-2,0),使得T,A′,B三點(diǎn)共線,△PHT為直角三角形,并且丨OP丨=丨OT丨,丨OH丨=$\frac{1}{2}$丨TP丨=2,即存在點(diǎn)O(0,0),使得丨OH丨為定值2,則O即為點(diǎn)Q(0,0).

解答 解:(Ⅰ)由題意可知:丨NM丨=丨NF丨,即曲線C為拋物線,焦點(diǎn)坐標(biāo)為F(1,0),
準(zhǔn)線方程為l:x=-1,
∴點(diǎn)N的軌跡C的方程y2=4x;

(Ⅱ)設(shè)A($\frac{{a}^{2}}{4}$,a),則A′($\frac{{a}^{2}}{4}$,-a),
直線AP的斜率kAP=$\frac{a}{\frac{{a}^{2}}{4}-2}$=$\frac{4a}{{a}^{2}-8}$,
直線AB的方程y=$\frac{4a}{{a}^{2}-8}$(x-2),
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=\frac{4a}{{a}^{2}-8}(x-2)}\end{array}\right.$,整理得:ay2-(a2-8)y-8a=0,
設(shè)B(x2,y2),則ay2=-8,則y2=-$\frac{8}{a}$,x2=$\frac{16}{{a}^{2}}$,
則B($\frac{16}{{a}^{2}}$,-$\frac{8}{a}$),
又A′($\frac{{a}^{2}}{4}$,-a),
∴A′B的方程為y+a=-$\frac{4a}{8+{a}^{2}}$(x-$\frac{{a}^{2}}{4}$),
令y=0,則x=-2,
直線A′B與x軸交于定點(diǎn)T(-2,0),
△PHT為直角三角形,并且丨OP丨=丨OT丨,
∴丨OH丨=$\frac{1}{2}$丨TP丨=2,
即存在點(diǎn)O(0,0),使得丨OH丨為定值2,則O即為點(diǎn)Q(0,0).

點(diǎn)評(píng) 本題考查拋物線的定義及標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,直線的斜率及方程,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的前項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4,設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,則數(shù)列{bn}的前項(xiàng)和Tn為( 。
A.$\frac{3n}{10(10-3n)}$B.$\frac{n}{10(10-3n)}$C.$\frac{n}{10-3n}$D.$\frac{n}{10(13-3n)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有四個(gè)游戲盒,將它們水平放穩(wěn)后,在上面仍一粒玻璃珠,若玻璃珠落在陰影部分,則可中獎(jiǎng),則中獎(jiǎng)機(jī)會(huì)大的游戲盤是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=An2+Bn,且a1=1,a2=3,則a2017=( 。
A.4031B.4032C.4033D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD與底面ABCD成30°角,E是PD的中點(diǎn).
(1)點(diǎn)H在AC上且EH⊥AC,求$\overrightarrow{EH}$的坐標(biāo);
(2)求AE與平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(-|x|)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.扔一枚硬幣三次,則
(1)已知有一次是正面朝上,求另外兩次反面朝上的概率
(2)已知有兩次正面朝上,求另一次反面朝上的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若曲線y=ax2+$\frac{x}$(a,b為常數(shù))過點(diǎn)P(2,-5),且該曲線在點(diǎn)P處的切線與直線2x-7y+3=0垂直,則a+b的值等于-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案