直線x-2y+m=0過圓C:x2+y2+2x-4y=0的圓心,則m=________.

5
分析:把圓C的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo),由直線過圓心,把圓心坐標(biāo)代入已知直線方程可得出關(guān)于m的方程,求出方程的解即可得到m的值.
解答:把圓C化為標(biāo)準(zhǔn)方程得:(x+1)2+(y-2)2=5,
∴圓心C坐標(biāo)為(-1,2),
把圓心C坐標(biāo)代入已知直線方程得:-1-2×2+m=0,
解得m=5.
故答案為:5
點(diǎn)評:此題考查了直線與圓相交的性質(zhì),涉及的知識有圓的標(biāo)準(zhǔn)方程,點(diǎn)與直線的位置關(guān)系,其中把圓化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+2y+m=0(m∈R)與拋物線C:y2=x相交于不同的兩點(diǎn)A,B.
(1)求實數(shù)m的取值范圍;
(2)在拋物線C上是否存在一點(diǎn)P,對(1)中任意m的值,都有直線PA與PB的傾斜角互補(bǔ)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過點(diǎn)O(0,0),A(1,3),B(4,0).
(1)求圓C的方程;
(2)若直線x+2y+m=0與圓C相交于M、N兩點(diǎn),且∠MON=60°,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-2y+m=0與圓x2+y2=8相交于A,B兩點(diǎn),若|AB|=2
3
,則m=
±5
±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)若直線x+2y+m=0按向量
a
=(-1,-2)平移后與圓C:x2+y2=5相切,則實數(shù)m的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•崇明縣二模)直線x-2y+m=0過圓C:x2+y2+2x-4y=0的圓心,則m=
5
5

查看答案和解析>>

同步練習(xí)冊答案