A. | $\frac{x^2}{20}-\frac{y^2}{5}=1$ | B. | $\frac{x^2}{20}-\frac{y^2}{100}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{20}=1$ | D. | $\frac{x^2}{25}-\frac{y^2}{100}=1$ |
分析 先求出焦點(diǎn)坐標(biāo),利用雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$的一條漸近線平行于直線l:y=2x+10,可得$\frac{a}$=2,結(jié)合c2=a2+b2,求出a,b,即可求出雙曲線的方程.
解答 解:∵雙曲線的一個(gè)焦點(diǎn)在直線l上,
令y=0,可得x=-5,即焦點(diǎn)坐標(biāo)為(-5,0),∴c=5,
∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$的一條漸近線平行于直線l:y=-2x-10,
∴$\frac{a}$=2,
∵c2=a2+b2,
∴a2=5,b2=20,
∴雙曲線的方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1.
故選:C.
點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tanB•tanA=2B | B. | tanA=2tanB | C. | tanB=2tanA | D. | tanA+tanB=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | CF∥平面A1EP | |
B. | A1E⊥平面BEP | |
C. | 點(diǎn)B到面A1PF的距離為$\sqrt{3}$ | |
D. | 異面直線BP與A1F所成角的余弦值為$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com