【題目】已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求f(30)的值.
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關系,并證明你的結論.

【答案】
(1)

【解答】解:由f(0)、f(2)、f(6)成等差數(shù)列,得

2log2(2+m)=log2m+log2(6+m),

即(m+2)2=m(m+6)(m>0).

∴m=2,

∴f(30)=log2(30+2)=5.


(2)

【解答】

證明:f(a)+f(c)>2f(b).

證明如下:

2f(b)=2log2(b+2)=log2(b+2)2

f(a)+f(c)=log2[(a+2)(c+2)],

又b2=ac,

∴(a+2)(c+2)-(b+2)2=ac+2(a+c)+4-b2-4b-4=2(a+c)-4b.

(a≠c),

∴2(a+c)-4b>0,

∴l(xiāng)og2[(a+2)(c+2)]>log2(b+2)2

即f(a)+f(c)>2f(b).


【解析】本題主要考查了比較法證明不等式,解決問題的關鍵是(1)根據等差數(shù)列性質求得m,然后計算即可;(2)首項求得2f(b)=2log2(b+2)=log2(b+2)2 , f(a)+f(c)=log2[(a+2)(c+2)],如何根據所給條件結合不等式性質作差比較大小即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校田徑隊共有男運動員45人,女運動員36人.若采用分層抽樣的方法在全體運動員中抽取18人進行體質測試,則抽到的女運動員人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點D是AB的中點.求證:

(1)AC⊥BC1
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:kx﹣y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線l不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點p(x,y)是直線kx+y+4=0(k>0)上一動點,PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點,若四邊形PACB的最小面積是2,則k的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導函數(shù),則不等式(x﹣1)f′(x)<0的解集為(
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(2)班共有60名同學參加期末考試,現(xiàn)將其數(shù)學學科成績(均為整數(shù))分成六個分數(shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計這次考試中該學科的中位數(shù)、平均值;
(2)現(xiàn)根據本次考試分數(shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學整體成績,決定組與組之間進行幫扶學習.若選出的兩組分數(shù)之差不小于30分(以分數(shù)段為依據,不以具體學生分數(shù)為依據,如:[40,50),[70,80)這兩組分數(shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|﹣1<x<2},B={x|2a﹣1<x<2a+3}.
(1)若AB,求a的取值范圍;
(2)若A∩B=,求a的取值范圍.

查看答案和解析>>

同步練習冊答案