已知:如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求證:AE·BF·AB=CD3.
科目:高中數學 來源: 題型:
如圖所示,四邊形ABCD和四邊形AB′C′D分別是矩形和平行四邊形,其中各點的坐標分別為A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求將四邊形ABCD變成四邊形AB′C′D的變換矩陣M.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知直線C1: (t為參數),C2: (θ為參數).
(1) 當α=時,求C1與C2的交點坐標;
(2) 過坐標原點O作C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立坐標系.已知點A的極坐標為,直線的極坐標方程為ρcos=a,且點A在直線上.
(1) 求a的值及直線的直角坐標方程;
(2) 圓C的參數方程為,(α為參數),試判斷直線與圓的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,已知A、B、C三點的坐標分別為(0,1)、(-1,0)、(1,0),P是線段AC上一點,BP交AO于點D,設三角形ADP的面積為S,點P的坐標為(x,y),求S關于x的函數表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知點集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),點列Pn(an,bn)在點集L中,P1為L的軌跡與y軸的交點,已知數列{an}為等差數列,且公差為1,n∈N*.
(1)求數列{an},{bn}的通項公式;
(2)求·OPn+1的最小值;
(3)設cn= (n≥2),求c2+c3+c4+…+cn的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com