【題目】某公司為了適應(yīng)市場(chǎng)需求對(duì)某產(chǎn)品結(jié)構(gòu)進(jìn)行了重大調(diào)整,調(diào)整后初期利潤(rùn)增長(zhǎng)迅速,后來(lái)增長(zhǎng)越來(lái)越慢.若要建立恰當(dāng)?shù)暮瘮?shù)模型來(lái)反映該公司調(diào)整后利潤(rùn)y與時(shí)間x的關(guān)系,可選用
A.一次函數(shù)模型 B.二次函數(shù)模型
C.指數(shù)函數(shù)模型 D.對(duì)數(shù)函數(shù)模型
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若奇函數(shù)f(x)在[1,3]上為增函數(shù),且有最小值0,則它在[﹣3,﹣1]上( )
A. 是減函數(shù),有最小值0
B. 是增函數(shù),有最小值0
C. 是減函數(shù),有最大值0
D. 是增函數(shù),有最大值0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2) 成立;則稱函數(shù)f(x)為理想函數(shù).試證明下列三個(gè)命題:
(1)若函數(shù)f(x)為理想函數(shù),則f(0)=0;
(2)函數(shù)f(x)=2x﹣1(x∈[0,1])是理想函數(shù);
(3)若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.圓錐的母線長(zhǎng)等于底面圓直徑
B.圓柱的母線與軸垂直
C.圓臺(tái)的母線與軸平行
D.球的直徑必過(guò)球心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
①在圓柱的上、下兩底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓柱的母線;
②圓錐的頂點(diǎn)與底面圓周上任意一點(diǎn)的連線是圓錐的母線;
③在圓臺(tái)上、下兩底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓臺(tái)的母線;
④圓柱的任意兩條母線相互平行.
其中正確的是( )
A.①② B.②③ C.①③ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|,g(x)=﹣|x+3|+m.
(1)當(dāng)m=7時(shí),解關(guān)于x的不等式f(x)﹣g(x)>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},求a取何值時(shí),A∩B≠與A∩C=同時(shí)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】cos 17°等于( )
A.cos 20°cos 3°-sin 20°sin 3°
B.cos 20°cos 3°+sin 20°sin 3°
C.sin 20°sin 3°-cos 20°cos 3°
D.cos 20°sin 20°+sin 3°cos 3°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com