【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)an對(duì)n∈N*恒成立,則整數(shù)λ的最大值為( )
A.3
B.4
C.5
D.6
【答案】B
【解析】解:當(dāng)n=1時(shí),a1=S1=2a1﹣22 , 得a1=4;
當(dāng)n≥2時(shí),Sn﹣1=2an﹣1﹣2n , 又Sn=2an﹣2n+1 ,
兩式相減得,an=2an﹣1+2n ,
即有 .
又=2,
則數(shù)列{}是以2為首項(xiàng),1為公差的等差數(shù)列,
=2+n﹣1,
即an=(n+1)2n ,
∵an>0,∴不等式2n2﹣n﹣3<(5﹣λ)an , 等價(jià)于5﹣λ> .
記bn= .
n≥2時(shí), .
∴n≥3時(shí),<1,(bn)max=b3= .
∴5﹣λ> , 即λ<5﹣= ,
∴整數(shù)λ的最大值為4.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,將四邊形沿對(duì)角線折成四面.使平面平面,則下列結(jié)論正確的是( ).
A. B.
C. 與平面所成的角為 D. 四面體的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人上午7時(shí),乘摩托艇以勻速vkm/h(8≤v≤40)從A港出發(fā)到距100km的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛?cè)ィ畱?yīng)該在同一天下午4至9點(diǎn)到達(dá)C市. 設(shè)乘坐汽車、摩托艇去目的地所需要的時(shí)間分別是xh,yh.
(1)作圖表示滿足上述條件的x,y范圍;
(2)如果已知所需的經(jīng)費(fèi)p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分別是多少時(shí)p最?此時(shí)需花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=lg(-x-1)的定義域與函數(shù)g(x)=lg(x-3)的定義域的并集為集合A,函數(shù)t(x)=-a(x≤2)的值域?yàn)榧?/span>B.
(1)求集合A與B.
(2)若集合A,B滿足A∩B=B,求實(shí)數(shù)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1, F(x)=求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日與月日的數(shù)據(jù),求關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于向量a,b,e及實(shí)數(shù)x,y,x1,x2,,給出下列四個(gè)條件:
①且; ②
③且唯一; ④
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x0時(shí),f(x)=.
(1)求當(dāng)x<0時(shí),f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com