已知函數(shù)在點處的切線方程為,且對任意的,恒成立.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求實數(shù)的最小值;
(Ⅲ)求證:).
(Ⅰ) (Ⅱ) 
(Ⅲ)先證,累加即得.

試題分析:(Ⅰ)將代入直線方程得,∴① 
,∴②  
聯(lián)立,解得                                
(Ⅱ),∴上恒成立;
恒成立;         
,,
∴只需證對于任意的                 


1)當,即時,,∴
單調(diào)遞增,∴                 
2)當,即時,設是方程的兩根且
,可知,分析題意可知當時對任意;
,∴                              
綜上分析,實數(shù)的最小值為.                             
(Ⅲ)令,有恒成立;
,得        

∴原不等式得證.  
點評:本題考查了利用導數(shù)研究函數(shù)的切線方程問題,在曲線上某點處的切線的斜率就是該點的導數(shù)值,考查了導數(shù)在最大值和最小值中的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想和分類討論的數(shù)學思想.特別是(Ⅲ)的證明,用到了放縮法和裂項相消,此題屬難度較大的題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某水域一艘裝載濃硫酸的貨船發(fā)生側(cè)翻,導致濃硫酸泄漏,對河水造成了污染.為減少對環(huán)境的影響,環(huán)保部門迅速反應,及時向污染河道投入固體堿,個單位的固體堿在水中逐漸溶化,水中的堿濃度與時間(小時)的關(guān)系可近似地表示為:,只有當污染河道水中堿的濃度不低于時,才能對污染產(chǎn)生有效的抑制作用.
(Ⅰ) 如果只投放1個單位的固體堿,則能夠維持有效的抑制作用的時間有多長?
(Ⅱ) 第一次投放1單位固體堿后,當污染河道水中的堿濃度減少到時,馬上再投放1個單位的固體堿,設第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.(此時水中堿濃度為兩次投放的濃度的累加)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若不等式,求的取值范圍;
(Ⅱ)若不等式的解集為R,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù).若關(guān)于的不等式的解集非空,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是方程的解,則屬于區(qū)間   。   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.
函數(shù)f(x)=x+(x>0)在區(qū)間(0,2)上遞減;
(1)函數(shù)f(x)=x+(x>0)在區(qū)間                  上遞增.
當x=                 時,y最小=                         .
(2)證明:函數(shù)f(x)=x+在區(qū)間(0,2)上遞減.
(3)思考:函數(shù)f(x)=x+(x<0)有最值嗎?如果有,那么它是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四組函數(shù)中,表示相等函數(shù)的一組是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果方程的兩個實根一個小于?1,另一個大于1,那么實數(shù)m的取值范圍是(     )
A.B.(-2,0)C.(0,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當a=-2時,求f(x)的最值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(3)當a=1時,求f(|x|)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案