已知f(x)=-(x-1)2+m,g(x)=xex,若?x1,x2∈R,使得f(x1)≥g(x2)成立,則實數(shù)m的取值范圍是
 
考點:函數(shù)最值的應用
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:?x1,x2∈R,使得f(x1)≥g(x2)成立,等價于f(x)max≥g(x)min,分別求出最值,即可得出結(jié)論.
解答: 解:?x1,x2∈R,使得f(x1)≥g(x2)成立,等價于f(x)max≥g(x)min,
∵g(x)=xex
∴g′(x)=(1+x)ex,
x<-1時,g′(x)<0,x>-1時,g′(x)>0,
∴x=-1時,g(x)min=-
1
e
,
∵f(x)=-(x-1)2+m,
∴f(x)max=m,
∴m≥-
1
e

∴實數(shù)m的取值范圍是[-
1
e
,+∞).
故答案為:[-
1
e
,+∞).
點評:本題考查函數(shù)最值的應用,考查導數(shù)知識的運用,:?x1,x2∈R,使得f(x1)≥g(x2)成立,轉(zhuǎn)化為f(x)max≥g(x)min,是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax
4x+b
(x∈[
1
3
,1])在[
1
2
,f(
1
2
)]處的切線方程為x+y-1=0,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n(n-6),數(shù)列{bn}滿足b2=3,bn+1=3bn(n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項的公式
(Ⅱ)記數(shù)列{anbn}的前n項和為Tn,求Tn<2014時n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD是邊長為10海里的正方形海域.現(xiàn)有一架飛機在該海域失事,兩艘海事搜救船在A處同時出發(fā),沿直線AP、AQ向前聯(lián)合搜索,且∠PAQ=
π
4
(其中點P、Q分別在邊BC、CD上),搜索區(qū)域為平面四邊形APCQ圍成的海平面.設∠PAB=θ,搜索區(qū)域的面積為S.
(1)試建立S與tanθ的關系式,并指出θ的取值范圍;
(2)求S的最大值,并求此時θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,
1
1+an+1
-
1
1+an
=
1
2
(n∈N*),
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設bn=1+a 2n(n∈N*),求數(shù)列{bn}的前10項和S10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=4x被直線x-y-1=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an=n,閱讀如圖所示的程序框圖,運行相應的程序,若輸入n=5,an=n,x=2的值,則輸出的結(jié)果v=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)的定義域為{1,2,3},值域為集合{1,2,3,4}的非空真子集,設點A(1,f(1)),B(2,f(2)),C(3,f(3)),且(
BA
+
BC
)•
AC
=0,則滿足條件的函數(shù)f(x)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x-y≤0
x+y≥0
y≤2
,則z=x-2y的最小值是
 

查看答案和解析>>

同步練習冊答案