【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

若評分不低于80分,則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式“不認(rèn)可”.

(Ⅰ)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

認(rèn)可

不認(rèn)可

合計

A城市

B城市

合計

(Ⅱ)在樣本A,B兩個城市對此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競賽,求A城市中至少有1人參加的概率.

參考公式:,其中

參考數(shù)據(jù):

0.10

0.05

0.025

2.706

3.841

5.024

【答案】(Ⅰ)列聯(lián)表詳見解析,沒有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān);(Ⅱ)

【解析】

(Ⅰ)根據(jù)題意得2×2列聯(lián)表,根據(jù)公式計算可得,結(jié)合臨界值表分析可得結(jié)果;

(Ⅱ)根據(jù)分層抽樣可知A市抽取2人,設(shè)為,,B市抽取4人,設(shè)為.然后列舉出所有基本事件和A城市中至少有1人參加的事件,最后利用古典概型概率公式計算可的結(jié)果.

(Ⅰ)由題意可得列聯(lián)表如下:

認(rèn)可

不認(rèn)可

合計

A城市

5

15

20

B城市

10

10

20

合計

15

25

40

,

所以沒有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān).

(Ⅱ)A市抽取人,設(shè)為,B市抽取人,設(shè)為

從以上6人中任選2人參加數(shù)學(xué)競賽的所有可能情況有,共15

設(shè)“A城市至少有1人參加數(shù)學(xué)競賽”為事件M,則事件M包含的基本事件有,共9種.

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求曲線處的切線方程;

2)對任意,恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時,試求方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強(qiáng)勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員20206,78月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

若評分不低于80分,則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式認(rèn)可,否則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式不認(rèn)可”.

1)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

認(rèn)可

不認(rèn)可

合計

A城市

B城市

合計

2)以該樣本中A,B城市的用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的頻率分別作為A,B城市用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機(jī)抽取2個用戶,用X表示這4個用戶中對此教育機(jī)構(gòu)授課方式認(rèn)可的用戶個數(shù),求X的分布列.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若雙曲線的實(shí)軸長為6,焦距為10,右焦點(diǎn)為,則下列結(jié)論正確的是(

A.的漸近線上的點(diǎn)到距離的最小值為4B.的離心率為

C.上的點(diǎn)到距離的最小值為2D.的最短的弦長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式b,c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;

2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程.

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,以,為頂點(diǎn)的梯形的高為,面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上的任意兩點(diǎn),若直線與圓相切,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點(diǎn)在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線 ,與平面中所成的角分別為,則(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案