在△ABC中,已知角A,B,C滿足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的兩根,若△ABC的面積為數(shù)學(xué)公式,試求△ABC的三邊的長.

解:在△ABC中,
∵角A,B,C滿足2B=A+C,∴B=60°,tanB=
∵tanA和tanB是方程x2-λx+λ+1=0的兩根,
∴把tanB=代入方程x2-λx+λ+1=0,
解得λ=2.由韋達(dá)定理有tanA•tanB=λ+1=2,
∴tanA==2+,
∴tanC=-tan(A+B)
=-
=
=1.
∴C=45°,A=75°.∴a:b:c=sin75°:sin60°:sin45°=():2:2
設(shè),,,
∵△ABC的面積為,
,
,
解得k=1,

分析:在△ABC中,由角A,B,C滿足2B=A+C,知B=60°,tanB=.由tanA和tanB是方程x2-λx+λ+1=0的兩根,把tanB=代入方程x2-λx+λ+1=0,解得λ=2.由韋達(dá)定理有tanA•tanB=2,知tanA=2+,tanC=-tan(A+B)=1.故C=45°,A=75°.由此利用若△ABC的面積為,能求出△ABC的三邊的長.
點評:本題考查解三角形在生產(chǎn)實際中的應(yīng)用,考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.綜合性強(qiáng),是高考的重點,易錯點是知識體系不牢固.解題時要注意三角形加法定理和正弦定理的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A,B,C的對邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=
3
c=
2
,則B=
 
,A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A為銳角,角A、B、C的對邊分別為a、b、c,sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2
2
,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A、B、C對應(yīng)的三邊分別為a,b,c,滿足(a+b+c)(a+b-c)=3ab,則角C的大小等于
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A,B,C滿足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的兩根,若△ABC的面積為3+
3
,試求△ABC的三邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A,B,C的對邊分別是a,b,c,且a2+b2-c2=
3
ab

(1)求角C的大小;
(2)如果0<A≤
3
,m=2cos2
A
2
-sinB-1
,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案